
The CB Programming Language

The CB
Programming Language

Version: July 5, 2020

Page 1 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Table of Contents
Copyright..5
Author...5
The CB Programming Language..5
Some of the Features of CB...6
Omitted Language Features..8
Source File Format...9
Libraries...10
Table: Standard Libraries...10
Terminology...11
Reserved Words..14
Table: Reserved Words...14
Names...15
Special Names ! and @...15
Main Program..16
Settings..16
Blocks and the Scope of Names...16
Data Types Supported..17
Integer...17
Table: Integer Value Ranges...17
Float...17
Bool..18
String..18
Valset..18
Complex...18
Table: Mathematical Functions...19
Table: Complex Mathematical Functions.....................................20
Value Types and Reference Types...21
The Value Nil...21
Objects and Inheritance...21
Selection...21
Expression Operators..22
Table: Operators in Expressions...22
Conditional Values (Inline If)..24
Postfix Operators ++ and --...24
Unary Operators...24
Shortcut Operators..25
Table: Shortcut Operators...25
Variables and Array Declarations..26
Implicit and Explicit Type Conversions....................................27
Integer Arithmetic..27
Bool Expressions..28
Type Casting..29
Data Values...30
Constants...31
Arrays..32
Associative Array...32
Fixed-Dimensioned Array (Matrix)..33
Shape...34
Table: Built-in Associative Array Functions...............................35
Table: Built-in Matrix Functions..36
Array and Matrix Assignments..37
Array Values and Array Constants..38
Implementation of Array and Matrix..38
Inline For Expression...39
Valset Types..40

Page 2 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Valset Values in a Variable or Array......................................41
Layouts and Bit Fields..42
Layout Constants..43
Strings...44
String Constants..45
Table: Escaped Characters in a String Constant............................45
String Operators..46
String Expressions..46
Table: Built-in String Functions..47
Typeset Specification...48
Procedures: Functions and Methods...49
Passing Parameters to Procedures..49
Declarations..50
Declaring Variables and Arrays..51
Named Constants...52
Statements..53
If Statement..54
If Construct..54
Switch Construct..55
Block Construct...57
Do Construct..58
While...59
Until...59
For Construct...60
Final Block...62
Repeat Statement..63
Break Statement...63
Return Statement..64
Control Flow Limitation...64
Blocks..65
Defining Objects..66
Abstract Objects..66
Defining Structures...67
Abstract Structures...67
Names in an Object or Structure...68
Access: Visibility of Names...68
Private...68
Shared..68
Public..68
Storage Areas - Static or Anchor or Leaf..................................69
Static Area...69
Anchor Area...70
Leaf Area...70
Structure Example...71
Object Values and Constants...72
Global Definitions (Outside an Object)....................................73
Inheritance...74
Instantiation of an Object..75
Default Value at Instantiation..75
Enhanced Type Objects...76
Properties..77
Defining a Property...77
Property Example..78
Defining Procedures...79
Identifying the Base Type...79
Procedure Overloading and Overriding......................................80
Procedure Options...80

Page 3 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Methods...81
Functions...81
Constructors..82
Simple Constructor..82
Default Constructor...82
Defining Operators..83
Defining Type Casts...84
Static Procedures...85
Procedure Prototypes..85
The Return Specification..85
Basic Object Type Procedures..85
Parameters Specification..86
Access..87
Shape Specification...87
The Procedure Body..87
Generator Functions...88
Range...88
Each..88
Invocation of a Procedure...89
Built-in Object Procedures..90
Table: Built-in Object Procedures...90
Name References in an Object..91
Prototypes..92
Function Prototype..92
Method Prototype..92
Type Cast Prototype...92
Operator Prototype..92
Pragma Declaration..93
Printing Strings..94
Hello, World! Program...94
Example...95

Page 4 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Copyright
Copyright © 2009-2020 - All Rights Reserved - John T. Bagwell Jr. of Sandpoint, Idaho

The author reserves all rights to the CB programming language concepts introduced in this
document. Please request permission before quoting any part.

Author
This programming language has been designed by John T. Bagwell Jr. of Sandpoint, Idaho.
Bagwell had experience as a developer of compilers and supervisor of a team of compiler
developers before retirement. He also published and presented a paper on code generation
with local optimization in compilers in 1972.

The CB Programming Language
CB is a language designed for general application programming or server scripting. It is a
complete programming language, not just for scripting, designed to be compiled. It is a pure
object-oriented language, because all values are objects, and is designed for simplicity of use.
Some typical language features in other programming languages are changed in order to
achieve lower error rates in writing programs.

If used as a scripting language, CB can be used in creating web sites and in creating tools to
run under a server such as Apache. It can also be used for creation of stand-alone programs. A
server environment simplifies input and output and simplifies user interaction. There is no
standard graphical library.

CB is intended to be compiled. The source files as a set create a library system which is
managed by the compiler and development tools.

After compiling, the result is stored in a file which produces the final program for execution. A
comparison is made for source file date being newer than file date to invoke the compiler as
needed.

Page 5 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Some of the Features of CB
• Every value is an object. Constants, arrays and expressions are objects. Procedures

and names of types are not objects.

• Procedures (methods and functions, properties, type casts, ...) are applied to a base
object. For example, the square root of X is X.sqrt rather than sqrt(X). Methods with no
base type specified have no base.

• All variables and arrays are declared and typed. It is a statically typed language,
meaning variables and functions (etc.) are explicitly typed. It has implicit type
conversion rules, not requiring type casting for built-in types.

• Limited inferred typing is used, for example in the for construct and initial values for
arrays.

• Default access to object members is public.

• Procedure overloading and overriding are supported. Operator definition is included. It
supports subtyping polymorphism. A procedure can have different implementations for
different parameters, using parametric polymorphism.

• The case of all reserved words is lower case.

• A concern in the design is type safety. There should be fewer opportunities to confuse
values, like types being misused.

• Another concern is maintainability. The language is concise. Making source edits easier
is one goal in the language design.

• Arrays and strings are designed to avoid overrun and bounds violations for safety and a
degree of protection against hacking.

• Arrays are mapped, a matrix is fixed-dimensioned.

• Arrays, by default, use a balanced tree implementation to improve search and insert
performance. Alternate storage methods can be specified.

• An array can have string-valued indexes rather than being restricted to integer indexes.

• Arrays of arrays are possible. This is different from a two-dimensional array, also
available as a matrix.

• A number of array procedures are provided, based on an array and possibly returning
an array. Simple array expressions are permitted, allowing optimized inline compiled
code.

• The language is expandable. For example, types complex and string are defined object
types; an existing definition is provided.

• Pointers are not used. In some cases a choice between value and reference is
provided.

• CB is a late-binding language.

Page 6 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

• Less punctuation is used than in the C family (C, C++, C#, Java, JavaScript, …, PHP).
There is less use of parentheses. Some operators are different; equality is "=?" rather
than "==" and inequality is "\=" rather than "!=". Semicolon is not used to end or
separate statements.

• A generator function enables obtaining a sequence of values as if they come from an
array.

• Data structures with repeating parts and a single descriptor part can be defined as
structures. Lists, stacks, trees, queues, chains, rings, hash tables, etc.

• A user-defined list or tree can also be made to operate like an array using a structure.

• Functions and objects can support multiple types with a single source definition.

• A function or method invocation with no parameters does not use a pair of parentheses.

• An enhanced object type can keep units apart, like Fahrenheit versus Celsius, or Meters
versus Inches.

• The model for file and directory manipulation is different, more object-oriented. It is
defined in a set of objects.

• Formatting for output is designed to reduce errors. This is not part of the language, but
is a set of objects and procedures in a library.

• Operators, complex type, array storage, string storage and type casting can be defined
or modified.

• Some reflection features are included.

Page 7 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Omitted Language Features
These are some of the omitted or simplified features:

• Different sizes (or precision) of floating point. One precision (double) is provided.

• Pointers and pointer arithmetic are omitted because of danger and misuse.

• Garbage collection is used automatically.

• Type punning, or union, is omitted because of danger and misuse.

• Namespaces, modules, packages, etc. are not defined. Simple scope rules are used.

• Multiple statements per line are disallowed. This simplifies editing and maintenance.

• Events and event handling are left to library definitions.

• Threading and parallel computation are not implemented.

• Prefix ++ and -- operators are omitted; postfix ++ and -- are included, except for
complex type.

• The C language family ternary operators '?' and ':' which allow a choice in the middle of
an expression are omitted. An alternative is provided using an inline if in the expression.

• Direct input from a user is omitted; there is no graphic support. Programs run on a
server or as background tasks or use an imported library or API.

• Closures, functions as parameters, callbacks, delegates and lambda expressions (these
are all related features) are not defined.

• Error handling is not part of the language syntax.

Page 8 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Source File Format
Source files are text files in the UTF-8 code. Output strings to text files and database values
and printed strings are by default in UTF-8 encoding. A UTF-8-encoded byte order mark (hex
EF BB FF) is accepted and ignored if it is the first Unicode code point in the source text.

The end-of-line in the source is the Unix form using LF (linefeed) or the Windows form using
the sequence CR LF (return followed by linefeed, 0x0C 0x0A). Either of these forms can be
used equally, regardless of platform. In other words, CR is ignored before LF.

UTF-8 characters other than those identified in this document are valid only in character string
values.

Source file lines are limited in length to 5,000 bytes. Source lines cannot be continued.

A source file consists of object and structure definitions, typeset definitions, valset definitions,
layout definitions and pragma statements.

There are no executable statements, control constructs, or assignments outside of a
procedure.

The main program is defined in the object named @Main, the constructor is the program.

There are no multiple statements on a line except for simple if statements.

Comments follow a # sign, to the end of the line. The comment mark acts as an end of line.
There are no multi-line or embedded (block or inline) comments.

A space must be placed between source tokens if the meaning requires a space.

Programs are expected to use indentation for readability. Readability suggestions -
Surround assignment operators with blanks.
Place a blank after a comma or a left curly brace.
Indent construct inner lines by at least 2 or 3 positions.
Use lots of comments.

The language does not use semicolons, except in string values.

Page 9 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Libraries
The library inclusion statement format is:

pragma use library_spec [,...]

where library_spec is a specifier of a library and a file, as a name list of files. Keyword pragma
is reserved, words after pragma are not reserved.

There are some standard library files which are automatically included, in directory std/. These
define standard objects or procedures and constants. The directory names are not reserved.

The library_spec has the form: directory/member where directory/ can be omitted; a search
is then done for the member in the directory user/ then the directory std/. Subdirectories are
permitted and searched.

The library_spec cannot be a string expression. Quote marks are not used.

Standard libraries are implicitly included, as needed. They are:

Table: Standard Libraries
Name[.cb]: Defining:

std/array
std/complex
std/structure
std/directory
std/files
std/fmt
std/io
std/math
std/settings
std/std
std/string
std/typesets

Array and matrix definitions
Complex data type definitions
Structure and array definitions
Directory procedures
File procedures
Formatting output
File operations
Mathematical constants and functions
Configuration file
Miscellaneous procedures etc.
String procedures and structure definition
Typesets

Page 10 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Terminology
The word "object" in this language and this language description is used in an atypical way.
Most object-oriented programming languages (OOPLs) use the word "class" instead as the
keyword for the definition of a new object type.

These terms are clarified:

• object - the traditional object, an encapsulated entity containing data and associated
functions and methods. In CB, every data item or value is an object, even the basic
things like constants and variables of basic types. These objects have predefined
functions.

• object type - the new type which is defined by the construct with the word object. This
is actually a "class" in common programming language terminology.

• enhanced object type - an object definition can inherit from a basic type, such as float,
and enhance the meaning of that type. This allows a way to add attributes or restrict
usage.

• basic type - the predefined types int, uint, float and bool.

• selector - the period character ("."). The left side is an object or an object type name,
the right side is a member, type name, built-in procedure or many other uses.

• member - every item contained in an object is a member of that object. Also a single
value in an array is an array member, or array element. Lists also have members.

• index - the subscript of an array. It can be an int, uint or string. The position
identification for an array element.

• statement - a line or construct which defines an action.

• construct - a multi-line statement.

• declaration - a line or construct which defines a type or defines a procedure. This is not
an executable statement.

• block - a sequence of statements in a construct. A block acts as a statement.

• Lvalue - an item which can be assigned a value in an assignment. A 'left-hand' value,
including a put property.

• reference - a parameter or base object passed without copying the value, using a
created pointer.

• value type - a type which is passed by copy. These types are uint, int, bool, float and
valset.

• array - a structure with indexed members. Two forms are supported: associative
(mapped) and matrix.

• matrix - a one- or two-dimensioned array with fixed allocation of space in contiguous
memory. A matrix can be dynamically allocated or with constant dimensions.

Page 11 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

• curly brace - "{" or "}". Used for defining constructs and blocks.

• square bracket - "[" or "]". Used for array indexing and substrings.

• structure - a set of values, possibly indexed, ordered or unordered. An array and a
string are a kind of structure. A structure contains a anchor part, which may represent a
root, and multiple leaf parts. New structure types can be added by defining them in an
object type definition with the option struct.

• layout - a type which describes the parts of an integer. Useful also for extracting bit
fields without need for a shift operator.

• procedure - a method (a "subroutine") or function, defined inside an object or with no
base type or on a basic type. In some languages these concepts may be called
methods or messages. Procedure definitions include:

◦ method - a procedure which does not return a value, thus it cannot be used as a
primary element of an expression. It is used as a statement.

◦ function - a procedure which returns a value, usable in an expression.

◦ property - a pseudo-variable, which may be read-only or write-only or both read and
write. Properties are defined as get properties and put properties. A get and put can
share the same name.

▪ get property - defines getting private data as a public value. Also a read-only
variable.

▪ put property - defines storing into an Lvalue, with appearance of a write-only
variable.

◦ generator function - a function which behaves like an array in a for construct.

◦ defined operator - operators +, -, *, /, etc., can be defined on objects.

◦ type casting - after a selector "." a type name "casts" an object to a different type.

◦ constructor - a procedure named the same as the object type, used to create new
items of that type.

• access or accessibility - the level of access to a member of an object. One of these
levels applies:

◦ private - visible and accessible only in the object and its procedures and functions,
not in inheriting objects. Defined with the option private. In a block, this access
prevents visibility in a nested level.

◦ shared - visible and accessible in the object and its procedures and functions, also
in inheriting objects. Defined with the option shared.

◦ public - default if access not specified with a keyword. Accessible anywhere.

• named constant - a name and type can be assigned a constant value.

• parameter - a value passed to a procedure. The base is also implicitly a parameter.

Page 12 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

• shape - a structure which has a name and which defines storage access.

Page 13 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Reserved Words
Reserved words cannot be used to define names for a program; they have predefined uses in
the CB language. Reserved words are also called keywords. Reserved words are in lower
case. Other case forms of these words are not reserved words but they should be avoided.

There are 47 reserved words.

Table: Reserved Words

The single dollar sign ($) is a reserved word, used in procedure definitions, meaning the
current object's content. It is similar to the word this or self in other programming languages.

Some reserved words (final, return, etc.) have multiple uses.

Page 14 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

$

abstract

anchor

and

bool

break

case

complex

const

do

else

false

final

float

for

from

func

gives

if

int

layout

leaf

method

new

nil

not

object

or

pragma

private

property

put

repeat

return

shared

static

string

struct

switch

then

true

typeset

uint

until

uses

valset

while

The CB Programming Language

Names
A name, or identifier, must begin with a letter. Digits or letters (in either case) are allowed after
the initial letter. The case of letters is significant. Spaces shall not be used in a name.

Also considered as a "letter" for use in a name are the characters dollar sign ($), underscore
(_), at-sign (@) and exclamation mark (!). An initial underscore or an initial at-sign are used for
language-defined names; user-defined names should avoid these as initial characters.

Legal names: inTheMiddle, a1, time_worked, days@work, $cost.
Invalid names: 1A, two words, A&B, x-hyphen, ¥999, 2×4.

Special Names ! and @
The single exclamation mark (!) is a supplied mathematical function, computing a factorial. For
example, the expression 4.! has value 24. It is not a reserved name.

The single at-sign (@) is a method name, with no base type specified, with one string
parameter. It outputs the string with end-of-line characters. It is an "echo" or "print" method,
customarily pronounced "out". It is not a reserved name.

Page 15 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Main Program
A "main program" begins by implicitly constructing and instantiating an object with the
type_name @Main, in effect, executing a line:

@Main

This invokes the constructor of the object type which is named @Main. This name is defined in
a setting.

Settings
The settings (configuration) data is found in library std/settings.cb. It consists of a pragma
line:

pragma settings

followed by command lines of this form:

command value1 value2 …

For example, it contains these lines, defining the format of displayed numbers:
locale thousands ','
locale decimal_point '.'

The following lines are among the defined types and array indexing defaults:
type complex @Complex
type string <@String>
array <@Array>
matrix <@Matrix>
start @Main

A modified settings file is permitted. It will contain overrides to the standard settings.

Blocks and the Scope of Names
A block is a sequence of statements and declarations which delimit the scope of meaning for
names. A block is also called a construct, since it usually consists of multiple lines.

A name has a scope limited to the object it is in when private is specified, or to the block in
which it is defined. The scope begins where the name is defined. At the end of that block, the
scope is terminated and the variable, array, string, or object is erased and not visible.

Within a block, a name cannot be redefined except in a new scope level, a nested block.

All names defined outside an object have global scope, available anywhere. Data (variables
and arrays) are not allowed outside of an object.

Names of object types, structures, valset types, layout names, typeset names are in the same
name category and a name must be unique for those usages.

Page 16 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Data Types Supported
The standard data types in CB are integer, unsigned integer, float and bool. They are also
called basic types. Type complex is defined by a line in the settings as an object. Alternate
definitions are possible.

New types can be added as objects.

Integer
Integers have no fractional part, and are (by default) signed 4-byte integers, with type keyword
int. Integers of other sizes can be declared. They are declared as int.16, int.32 (also as int)
and int.64. There are no int.1 or int.8 types. All of these are signed. The appended number is
the number of bits used.

Unsigned integers are also available, as uint.64, uint.32 (also as uint), uint.16, uint.8 and
uint.1 types. The size numbers after the period are bit lengths.

Alternate names can be used as shown. Both uint and int types are integers.

Table: Integer Value Ranges
Type Alternate Name Integer value ranges, shown with commas

uint.1
uint.8
uint.16
uint.32
uint.64

int.16
int.32
int.64

uint

int

0 or 1
0 to 255
0 to 65,535
0 to 4,294,967,295
0 to 18,446,744,073,709,551,615

-32,768 to +32,767
-2,147,483,648 to +2,147,483,647
-9,223,372,036,854,775,808 to +9,223,372,036,854,775,807

Float
Floating point values are based on the IEEE 754-2019 standard, implementing double
precision binary floating point arithmetic, using 64 bits (8 bytes.) There is no shorter (standard
or half float) or longer form. The decimal floating point in that standard is not implemented.

There are no constants denoting the IEEE-754 infinity and not-a-number (NaN) or subnormal
values for the float type. These may have multiple internal values.

The type supported is float. The size is 64 bits. A float constant is a floating point value that
consists of a numeric value where each digit in the value is from 0 to 9, a required decimal
point, a required digit on each side of the decimal point, and an optional exponent after a letter
E or e that indicates a multiplier by a power of 10. A float has about 18 digits, with an exponent
maximum of about 308.

In addition, the identifier _PI is defined as a float named constant with the value pi (p) to full
float value in the automatically included math library. This identifier can be redefined; it is not
reserved. Also defined are _E, as constant e and other values.

Page 17 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Bool
The type bool is a logical value, with true or false values. It is named for George Boole, who
defined logic manipulation rules. It is also called Boolean or Logical in some programming
languages.

The result of a comparison or bool expression is either true or false. A bool value occupies
one byte in storage. The constant true has value 1 and false has value 0 internally.

A bool value in a layout can occupy a single bit.

The if statement and other places require a bool expression.

The basic arithmetic types may be type cast to bool. A nonzero value becomes true, a zero
value becomes false.

A bool value may be type cast to an integer or unsigned integer, with true becoming 1 and
false becoming 0. It may be type cast to a string; true becomes 'T' and false casts to 'F'.

String
The string type definition is defined as an object type in the library std/string. The library is
implicitly included.

Strings vary in length. The length is from 0 to a value that fits in int.32, approximately 2 billion
bytes. The string type in CB is not terminated by a "null character" (\00) as in C/C++ and other
languages. Characters in a string are UTF-8 code, using 8-bit bytes. Strings are immutable;
internal character values cannot be modified.

There is no separate type for single characters. There are no fixed-length strings.

Valset
Valset items are named constant unsigned integer values, grouped into a new type name. This
is similar to the C language 'enum', but more restrictive because the names are typed. A valset
constant name can be used only as a value in a variable or array using the correct valset type
name as its type.

Complex
The complex type definition is found as an object type in the library std/complex. The library is
implicitly included. The type name complex is a reserved word mapped in the settings file to
the name @Complex.

Complex type is a pair of float numbers, one real and one imaginary. Complex variables are
immutable; a part of the value cannot be altered.

Alternative implementations can be defined. Arithmetic operators supported are the same as
type float, except for remainder and postfix ++ or --. Comparisons supported are equal and not
equal.

Page 18 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Table: Mathematical Functions
Function(y): Base(x) Type: Result Type: Returns:

abs
arccos
arccosh
arcsin
arcsinh
arctan
arctan(float y)
arctanh
Binary
bitSize
ceil
cos
cosh
exp
floor
Hex
isEven
isInfinity
isNaN
isNeg
isNonZero
isOdd
isPos
isZero
log
log10
maxValue(y)
minValue(y)
round(uint y)
roundEven(uint y)
sin
sinh
sqrt
tan
tanh
!

float int
float
float
float
float
float
float
float
(any uint or int)
(any uint or int)
float
float
float
float
float
(any uint or int)
int uint
float
float
int float
int uint float
int uint
int float
int uint float
float
float
float int
float int
float
float
float
float
float
float
float
uint.8

(base)
float
float
float
float
float
float
float
string
uint
float
float
float
float
float
string
bool
bool
bool
bool
bool
bool
bool
bool
float
float
(base)
(base)
float
float
float
float
float
float
float
uint.64

Absolute value
Arc Cosine
Arc Hyperbolic Cosine, x: [1,+infinity)
Arc Sine
Arc Hyperbolic Sine, x: (-infinity,+infinity)
Arc Tangent
Arc Tangent of y/x, y is float
Arc Hyperbolic Tangent, x: (-1,+1)
Bits in the integer as a string
Returns 1, 8, 16, 32 or 64
Whole number > or =, away from 0
Cosine
Hyperbolic Cosine
Exponential, e to the power
Whole number, truncated toward 0
To a hex string, no leading 0x
Returns true if even else false
Test for "Infinity" + or -
Test for "Not a Number"
Returns true if < 0 else false
Returns true if \= 0 else false
Returns true if odd else false
Returns true if > 0 else false
Returns true if =? 0 else false
Logarithm, base e
Logarithm, base 10
Maximum of base(x) and y
Minimum of base(x) and y
Round y digits away from zero
Banker's rounding, even lowest digit
Sine
Hyperbolic Sine
Square root
Tangent
Hyperbolic Tangent
Factorial

The standard math functions are defined in standard library std/math.

Functions maxValue and minValue require the base and y to be the same type.

Page 19 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

The following functions (or get properties) are defined for complex type:

Table: Complex Mathematical Functions
Function: Result Type: Returns:

abs
arccos
arg
arcsin
arctan
Conjugate
cos
cosh
exp
Imaginary
isNonZero
isZero
log
log10
Real
Reciprocal
sin
sinh
sqrt
tan
tanh
xI

complex
complex
complex
complex
complex
complex
complex
complex
complex
float
bool
bool
complex
complex
float
complex
complex
complex
complex
complex
complex
complex

Absolute value
Arc Cosine
Argument, same as theta, the angle for polar form
Arc Sine
Arc Tangent
Complex conjugate
Cosine
Hyperbolic Cosine
Exponential, e to the power
Imaginary part
Returns true if \= 0 else false
Returns true if =? 0 else false
Logarithm, base e
Logarithm, base 10
Real part
Complex 1.0/x
Sine
Hyperbolic Sine
Square root
Tangent
Hyperbolic Tangent
Multiply by the imaginary i

Function isZero is true if both real and imaginary parts are zero.

Function isNonZero is true if either real or imaginary is nonzero.

Operators for arithmetic +, -, *, / and unary +, - are defined. Postfix operators ++ and -- are not.

A complex constant or value is written as complex(real part, imaginary part), using the
constructor. The parameters are named Real and Imaginary and have default values of 0.0, so
the constructor can be invoked using the optional parameter names Real and Imaginary, as in
this example:

complex Ix3 = complex(Imaginary=3.0)
complex Z = Ix3.sqrt # example function usage

The following public constant names are defined:
_COMPLEX_I the imaginary value i
_COMPLEX_ONE real part 1.0, imaginary part 0.0

Page 20 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Value Types and Reference Types
Value types are simpler data types which pass a copy of a value to a procedure, and which
copy a value when they are assigned. These are the builtin or basic types except string and
valset typed values.

Reference types are more complicated. When reference types are passed to a procedure, a
copy of a reference (a hidden pointer) is passed. When an assignment is done, the reference
is used, rather than the value. These are arrays, strings and typed objects.

Two references can refer to the same copy of data. If one item is altered, both references see
the same altered data.

Typed objects provide some control over this behavior; also procedures may force a specific
copy or reference behavior on their parameters.

In an object definition, a name of a reference type item is always treated as a reference.

The Value Nil
The reserved word nil identifies a reference to nothing, a reference value for any object type. It
does not mean an uninitialized object; it is a "missing" object.

A function can return nil to indicate "no object". The default value of a defined type object
reference is nil.

The value nil can be assigned to a reference.

Objects and Inheritance
Every value is an object and has an object type.

Objects support single (multi-level) inheritance.

Arrays and matrices and strings implicitly inherit a defined structure type.

Selection
The selector operator, a period, is used to refer to a member (variable, procedure, etc.) of an
object, or to specify a type cast.

For example:

obj.fun invokes the function fun on object obj.
var.string uses a type cast to convert variable var to a string.
type.member refers to a static entity member in the static area of object type.

Page 21 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Expression Operators

Table: Operators in Expressions

Operator Description Priority Associativity Operand Types

.

++
--
+
-
\
^
*
[*]
/
/
%
&
|
+
-
|
~
<:
:>
=?
\=
<
<=
>
>=
not
and
or
=
<->

Member/procedure / type cast /
 name selector and more
Postfix, incrementation
Postfix, decrementation
Unary prefix +
Unary prefix -
Unary prefix bitwise complement
Exponentiation
Multiplication
Matrix Multiplication
Division
Split string on a separator
Remainder / Modulus
Bitwise and
Concatenation of strings
Addition
Subtraction
Bitwise inclusive or
Bitwise exclusive or
After
Before
Equality comparison
Not equal
Less than
Less or equal, not greater than
Greater than
Greater than or equal, not less than
Logical (bool) NOT (unary prefix)
Logical (bool) AND
Logical (bool) OR
Assignment
Swap operator

11

10
10
9
9
9
8
7
7
7
7
7
7
7
6
6
6
6
6
6
5
5
5
5
5
5
4
3
2
1
n/a

n/a

n/a
n/a
n/a
n/a
n/a
right
left
left
left
left
left
left
left
left
left
left
left
left
left
left
left
left
left
left
left
n/a
left
left
right
n/a

n/a

int
int
int float
int float
uint
int float
int float
int float (2D matrices)
int float
string
int float
uint
string
int float
int float
uint
uint
string
string
(any)
(any)
int float string
int float string
int float string
int float string
bool
bool
bool
[special rules]
[special rules]

Type int above includes uint and any valid size. Type uint in the table includes any size.

Highest priority numbers are evaluated first.

Assignments do not produce a value. An assignment is a statement, not an expression.

Page 22 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

The exponentiation operator ^ is right associative; the expression a^2^3 is the same as
a^(2^3). The exponent must be a small int value, -63 to +63.

The comparison (relational) operators (=?, \=, <, <=, >, >=) return a bool value true or false.
The values true, false and nil cannot be compared with anything. Thus, the comparison
expression a < b < c is invalid.

Division of an integer by an integer produces a truncated (toward zero) integer result. Division
by zero causes an error, DivideByZero.

The remainder (modulus) operator % returns the remainder from integer division. For float

operands, the division is truncated to an integer. For z = x % y, the sign of the remainder is the
same sign as x. The right operand y shall not be 0. The result z is z = x - (x / y) * y, using
integer division.

The swap operator <-> requires both sides to be an Lvalue and the same type.

The string after and before and split operators are described in the String Operaators
discussion, later in this document.

Page 23 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Conditional Values (Inline If)
Within an expression, a simplified inline if can be used to choose between values based on a
comparison or bool value. This is similar to the question mark ternary operator in C-like
languages. A required pair of parentheses enclose an if and else, in this form:

(if bool_expression then true_value else false_value)

The true and false values must be expressions of the same type. Example:

xyz = (if abc.isPos then abc else -abc) # equivalent to xyz = abc.abs

Postfix Operators ++ and --
Postfix operators ++ and -- require the left operand to be an int or uint Lvalue. An object
reference to an element completes the reference, returns that value, then increments it.

The postfix operators ++ and -- increment or decrement the left operand by 1 and return the
original value. Thus, if mm has the value 4, mm++ changes mm to 5 and returns 4. This
operator as a statement also acts as an assignment statement, ignoring the original returned
value. These can be statements because they alter a value.

These operators cannot be used with float or complex type.

There are no prefix versions of these operators.

Unary Operators
The unary operators +, - and ~ are restricted in placement. They shall not follow a binary or
unary arithmetic operator or a relational (comparison) without a space. They may follow a left
parenthesis, a left square bracket, an assignment operator, a comma, or the logical operators
and, or, not.

Page 24 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Shortcut Operators
The operators and and or evaluate the right side only as necessary. The left side determines
the value alone for some cases:

Table: Shortcut Operators
Left Side Operator Right Side Result

true or skipped, not evaluated left side alone determines value = true

false or evaluated the value is the right side value

true and evaluated the value is the right side value

false and skipped, not evaluated left side alone determines value = false

This skipping is called "short circuiting" or "shortcut." Any functions or postfix ++ or -- in the
right side which were skipped may have had side effects which will not be done.

Short circuiting is not applied in a bool assignment.

The bit-wise operators & and | do not short circuit.

Page 25 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Variables and Array Declarations
A variable is a single value of any type, declared:

type name_list

Example:
int abc
string name, last_name, nick_name

It has a type, which is bool, int, uint, string, complex, float, or a valset type name or an
object type name.

An initial value can be assigned in the declaration:

int maxSize = 1000

Structure declarations are also allowed as a shape:

string<List> titles = ['duke','baron','viscount','earl','prince']

Within a declaration, only one type can be named. This is invalid usage:

int ijk, string str

Page 26 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Implicit and Explicit Type Conversions
An assignment will convert the type of the right side to the type of the left side if it can do so.

Unsigned uint widens as it converts to int. In other words, uint.16 widens to int.32.

Conversions to and from the numeric types int and float are obvious. Overflow or loss of
significant digits in converting from float to int is ignored.

Conversion from a numeric value to string is allowed by type casting or implicit conversion, and
is the same result used in the standard method @, or the same as a value insertion in a string.
Integers are exact, float numbers are approximate.

Conversion from a string to a numeric value will cause an error if there is no valid conversion
after trimming trailing blanks. An empty string and a value too large to be an int both cause a
conversion error.

A string value like "123GO" does not convert to the integer 123. It causes a conversion error.

Integer Arithmetic
Integers with widths 32, 16, or 8 bits or 1 bit (which is unsigned only) "widen" to the next size in
an expression, when combined with +, -, or * operators. There is no widening for division or for
the bit-wise operators.

When a longer integer is assigned to a shorter integer, the upper part is discarded without
error; integer overflow or truncation is not diagnosed.

Widening or shortening (truncation) can be specified by type cast; abc.int.16 extracts the least
significant 16 bits of the integer abc.

An integer divided by an integer truncates toward zero. It does not yield a float result.

Page 27 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Bool Expressions
A bool expression has a value of true or false. These are also reserved words for the values.
Arithmetic on these values is disallowed; the value of true is nonzero but not specified. A non-
bool value cannot be compared with true or false. Bool values cannot be compared with =? or
\=. A similar result is obtained by use of and.

A bool expression cannot be cast into a float value.

The bool operators and and or in a bool expression evaluate using shortcut evaluation except
in an assignment. If a value can be determined while skipping a subsequent portion of the
expression, the skip is permitted. This shortcut evaluation does not apply to the bitwise and (&)
and bitwise or (|) operators.

One example:
 if abc <= 9 AND def > 0 break # "def > 0" is skipped if abc > 9

Page 28 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Type Casting
A value can be converted to a compatible type by casting the type:

value.type_name

converts the type or changes to a compatible type. If the value can be assigned to an item of
the type_name specified, it is a legal type cast. This is not "type punning" which retypes
without conversion. There is no type punning in CB.

An object variable can be cast as a type it inherits. The result loses any additional features.

A value that has a type cast is considered a new value, so a reference to the old value is not
used.

Type casting applied to an array applies to each element, creating a new array.

Any basic type casts to string. A string casts to a type if it can be legally converted.

A bool can be type cast to string; the result is 'T' or 'F'. Casting to integer from bool is allowed;
true casts to 1, false to 0.

Casting to bool is not allowed. Comparison operators and the inline if can be used.

Casting between int and uint - the sign may change to a data value, and vice versa, without
an error signalled. Data loss can occur if the size of an integer value is shortened, also with no
error. Integer sizes remain part of the type; abc.uint.8 extracts the low-order byte. Casting
from int to uint may convert a sign to a data value, and vice versa.

Casting from float to int or uint is allowed. There is no test for loss of significance.

Page 29 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Data Values
Named data can be any one of these things, all of which are considered objects:

• A simple item (a "scalar") with a basic type bool, float, int, uint, string, complex, or a
valset type.

• An array has integer values or string values as indexes. The first index is 0 when
unsigned integer indexes are used. An array element can be missing (nil), or undefined.
A missing numeric value has the value 0, and a missing string value is the zero-length
string value '' (two apostrophes.)

• A structure.

• An object, which may have procedures and functions and other definitions in it. The
definitions may be marked private or shared to control access. The object_type is
defined with an object declaration and variable or array names or functions can be
assigned to that type. An object can inherit.

• A named constant, which has a type.

Page 30 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Constants
Integers (int or int.32) are signed integer values between -2147483648 and 2147483647. The
sign is not part of a constant, it is a unary operator + or - in an expression. A 16 bit integer
constant has a suffix of S16 or s16 and an 8 bit integer has a suffix of S8 or s8. An unsigned
integer constant has a suffix of U or u and a bit length.

An unsigned or signed integer constant can also be written as 0Xdddddddd where each d is a
hexadecimal digit. The hexadecimal digits A through F and the X can be either case. There are
up to 8 hexadecimal digits in a uint.32; there are 2 hex digits per byte. Length and sign
suffixes with U or S are optional. Otherwise it is assumed unsigned. 0X80000000 is the largest
integer negative value. Examples: 0xFFs8, 0XabcdU16, 0xCD.

There is no support for octal values. A leading zero is ignored in a numeric constant.

A binary constant can be used for signed or unsigned integers. It has the form 0Bddd...d where
each bit d is a bit of value 0 or 1. The B can be b. A sign or unsigned suffix (S or U) with
optional bit size can be on the end. By default, a binary constant is unsigned. The value has
extra leading 0 bits added at the left (high end) as needed. At most 64 bits are allowed.

Float constants have a decimal point and an optional exponent after an E or e. A digit must
precede and follow the decimal point.

A string constant is enclosed with apostrophes or quotation marks. If it begins with apostrophe,
an embedded apostrophe must be preceded by a reverse slash. Similarly a quotation mark
inside a string constant started with a quotation mark must have a preceding reverse slash.

A simple string constant begins with a grave accent and ends with a blank or end of line or
comma or right parenthesis.

Page 31 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Arrays
An array is a collection of data with a unique index associated with each array member. Arrays
are indicated by specifying the form of the index in square brackets after the type.

Arrays are implemented in two forms, an associative array (a mapped structure) and a matrix,
which is a fixed-dimensioned array.

An array is declared with one or more array_spec definitions, as follows, first the type of data in
the array, then the index specification (shown below), then the array_name:

[[index_type]] ...

Associative Array
Associative array indexing (not for fixed-dimensioned arrays) is defined by a structure named
@Array, identified by a settings file line named array.

The index_type for an associative array can be int (any size) or uint (any size except uint.1)
or it can be string. The default index_type is uint (uint.32). An array index cannot be type
float, bit, bool or an object type or valset type. A typeset_name which names only valid types
can be used for the index_type.

When the index type is uint or defaulted, the minimum index is 0 for the first element. The
minimum is unspecified for a (signed) int index; it can be negative. The maximum index or
maximum number of elements of an associative array is unspecified.

Page 32 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Fixed-Dimensioned Array (Matrix)
A fixed-dimensioned array (a matrix) has an unsigned integer constant or an unsigned integer
variable name (for a procedure parameter) as its index-type in the array_spec. These arrays
have indexes which are type uint. They occupy contiguous space and they have default
values for each element, like a variable.

A matrix specification can also be a pair of index numbers, defining a two-dimensional array or
matrix. This type of array stores values by row. Thus, X[2,3] is next after X[2,2]. The minimum
value of a row or column number for a matrix is 0, so the first element is X[0,0].

In a procedure, if an array parameter or the base is a fixed-dimension array, it may optionally
be declared with a name in each dimension rather than a constant. This name acts as a get
(read-only) property returning a type uint value. If two array parameters in the procedure use
the same name, the passed arrays must have the same dimension value for that name.

A matrix can have variable dimensions which are known values.

A row or column of a matrix can be indicated in an expression by use of functions Row or
Column. For example, X.Column(3) is the fourth column, still a two-dimensional matrix.

Matrices with arithmetic values (types int, uint, float or complex) and having the same
dimensions can be combined element-by-element using operators +, - and*. For two
dimensions, matrix multiply is supported with the operator [*] when the dimensions allow the
multiply.

Page 33 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Shape
In addition, in place of an array_spec a structure_id (a structure name in angle brackets) can
be specified. The combination of array_specs or structure_ids is called a shape specifier.

An array of arrays is permitted, by repeating another array_spec part, in square brackets, after
the name. An array of associative arrays is a jagged array because the array lengths can vary.
Two levels are allowed. This is not the same as a two-dimensional array. The outer array holds
only arrays as members.

The array_spec or shape is optionally followed by an initial value:

= array_value

The type_name may be omitted from the array value and implied on this value to be the same
as the array name's type.

Examples of array declarations:
float[uint] scores
string[4] suits = ['club','diamond','heart','spade']
float[][string] table # an array of string-indexed arrays of float values

Initially an array which is declared as shown has no elements. An empty array value is written
as type[] or []. The type can be omitted where it is known.

An array can have as members a type of structure and vice versa. For example, an array of
List structures containing strings:

string[]<List> name_lists # initially an empty array

Values can be assigned to single or multiple elements as shown:
int[] arr = int[100, 25, -6, 94]
arr[6] = 'XYZ' # skipping indexes 4 and 5, remaining are unassigned

The index values in the initial value can be omitted or specified before the values, with a colon:
int[] iarr = [23,-88,10:123,345] # defines 4 array elements, indexes 0,1,10,11

Values can be assigned to single or multiple elements as shown:
float[string] salary = ['driver':12000.00, 'sales':15000.00]
salary['CEO'] = 249995.00 # adds a new element, CEO's salary is $249,995.00

An array of arrays can have an initial value (all on one source line):
string[string][string] classroll = ['Lit':['Walt Whitfolk','Will Shakefist'],

'Geometry':['Archie Medes','Ima Euclidian','Neva Cross'],
'Gym':['Wilt Nicklaws']]

For an array of arrays, a reference with fewer indexes is a reference to an array.

A 2-dimensioned array (matrix) expects each row to have the same number of columns. An
array value is extended with defaults:

short[3,2] Mat = [[1,2,3], [55,44], [99]] # 3 rows, 2 columns

Page 34 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

An array is not instantiated unless it is assigned an initial value or an array value is assigned or
a reference to another array is assigned. Declaring an array establishes a place-holder for a
reference to an array.

A reference like Arr[] as a left value (an Lvalue) in an assignment, where Arr is associative
and no index is given, is assumed to create an index value which is 1 higher than the
maximum already used index value, or 0 if the array Arr is empty. This is valid only for uint
indexed arrays.

A missing array element reference does not return a value. It must not be an operand other
than an Lvalue. Existence of an array element or an object as a legal reference can be
checked with the function isNil.

Table: Built-in Associative Array Functions
Name: Returns:

Clear
Count
Copy
Current
Each
First
getIndexType
Indexes
Join(string sep)
Last
MaxValue
MinValue
Next
Reset
Slice(indexType m,n)

method; empty the array, delete an array element
the number of elements which have a value
copy of the array
current element (a reference)
generator function; sequences through array
reference to the element with the lowest index
string function, type name of the index
array of index values used for elements of the array
string, elements as strings, concatenated with separators sep
reference to the element with the highest index
maximum value in the array, must be comparable
minimum value in the array, must be comparable
moves Current, returns reference
sets Current to First
an array extracted from index m through n, m <= n

Page 35 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Table: Built-in Matrix Functions
Name: Returns:

Clear
Column(n)
Copy
Count
Determinant
Diagonal
Flatten
Identity

Inverse
numCols
numRows
Row(n)
Slice(mr:nr,mc:nc)
Sum
Transpose

method; empty the matrix, set all values to default
the values of column n, left in place
copy of the matrix
product of row and column dimensions
a scalar value
diagonal values as a matrix with 1 row
a single row matrix using the same values row by row
base is a uint, number of rows and cols; creates a square matrix
with ones on the diagonal and zeroes elsewhere
inverse of a square matrix
the number of columns (second dimension) as a uint
the number of rows (first dimension) as a uint
the values of row n, left in place
the submatrix idendified
the sum of the values
the transpose, rotated around the diagonal

Matrix values are type int, float or complex for functions Determinant, Diagonal, Identity, Sum
and Inverse. The matrix must be square except for Sum.

Functions Column, Flatten and Row return a reference to values left in place from the base
matrix.

Built-in array and matrix procedures are defined in std/arrays.

Page 36 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Array and Matrix Assignments
The only array and matrix expressions allowed are in simple assignments to arrays and
method calls on them. Assignment to an array or matrix name is interpreted differently in these
examples:

• abc = xyz ◄ both are arrays of the same type; copies the reference. Both arrays refer to
the same data. If abc is a matrix and xyz is an array, abc is filled by rows. The counts
and dimensions must match.

• abc = xyz * 2 ◄ both are arrays of the same type; the elements of xyz are doubled the
assigned. Other simple expressions like this are permitted.

• abc = xyz.Copy ◄ assigns a reference to a new copy of xyz. They refer to different data
sets.

• abc = xyz ◄ where the types differ, but can be converted, builds a new array and
assigns a reference to it.

• abc.method ◄ where method is a method which is not specific to arrays then it applies
method to each member of abc, or applies method to the whole array if it is an array
method.

• abc = def op xyz ◄ where op is a binary operator and the three values are arrays of the
same length and type, or matrices of the same dimensions, or one of the operands def
or xyz is scalar. If they are associative arrays, the index types must match. If one
element is nil, the corresponding element is ignored.

• Matrix multiply is defined only for matrix values that fit these rules for A [*] B:

• The second dimension (number of columns) for A must match the first dimension
(row count) of matrix B.

• The result has dimensions: [row count of A, column count of B].

Examples:

int cnt = arr.count # gets the number of elements in array arr
arr.sort # sorts the values in an array with integer indexes
a_array.Clear # removes all elements
arr[4].Clear # removes the 5th member of arr
arr = arr + 2.0 # adds 2.0 to each element

int[2,3] X
int[2,4] A = [[2,4,6,-8],[-3,6,9,12]]
int[4,3] B = [[3,2,-1],[2,1,-4],[6,8,22],[0,7,-14]]
X = A [*] B # matrix multiply

Page 37 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Array Values and Array Constants
An array value is a sequence of appropriately typed values enclosed in square brackets,
separated by commas. A final comma may appear with no value following, before the right
bracket. Index values may be supplied in the list followed by a colon and value. All the values
must be the same type, and all the indexes must be the same type, with types matching the
array definition.

An array of arrays will have array values in each position of the array, as required.

An empty array constant is a pair of square brackets, [].

A valset array value is written like any other array value, with a list of the valset value names
as the value list. All member names must be from the valset.

If all the values are constants, the bracket-enclosed array value is an array constant.

Indexes may be supplied on all values, with index, then a colon, followed by the value.

Example, initializing in a declaration:
float[string] prices = ['pencils':0.99, 'eraser':0.69,]
uint[] rooms = [3, 1, 4, 2]

The type of the array element values and indexes in an array value or constant is assumed, in
most cases, from context, in a declaration. An initial value assumes the type being declared,
and a value passed as a parameter or assigned to an array assumes the expected type.

If desired, the type of the array can be placed just before the left square bracket. The index
types must all be the same and the index type cannot be specified in the constant.

An array value can appear in an array initialization, or an array assignment on the right. The
type name must appear before the left square bracket unless it can be determined from
context.

A matrix constant is like an array of arrays.

An array value cannot appear on the left of an assignment.

An array name passed as a parameter to a procedure or used as the base for a procedure is a
reference to the array, not a copy.

A generator function can produce an array value. Range produces an array value if required.

Implementation of Array and Matrix
An array which is not fixed-dimensioned is implemented (by default) as a 'map', a balanced
tree structure, using a structure name @Array. The indexes are maintained in sorted order. A
different structure may be applied to define indexing for a specific object type.

The implementation of a matrix is defined in structure @Matrix.

Page 38 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Inline For Expression
Similar to a for statement, an inline for expression is an anonymous (unnamed) generator
function which produces a sequence of values, as an array. It is a parenthesized expression of
the form:

(for for_value from for_source [if condition] [return_condition])

where for_value is a variable of the same type as for_source, the type can be predefined or it
is inferred, and for_source is an array, a string, a generator function invocation or anything
allowed in a for statement as a source. The number of returned items from for_source must be
limited. Only one inline for is permitted in an expression or assignment.

The if, when false, skips a value, but the return_condition is still tested. The return_condition
tests which values are returned, or when to stop. It is optional, and takes one of the forms:

until condition
while condition

where condition is a bool expression using the for_value variable. The until and while
determines when to stop.

Example:
int[] sqrs
sqrs = (for x from 26.Range(start=1))^2 # values 1, 4, 9,...,625

Page 39 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Valset Types
A new defined data type can be introduced with the valset declaration:

valset valset-type-name name-value-list

where name-value-list is a set of names with optional values, separated by commas. These
values are in the form:

name [=unsigned_integer_value]

The names are names for a set of values, possibly with a constant value for the name after an
equals sign. If no integer value is shown, the first name is assigned the value 0, the next is 1,
etc. Once a value is assigned to a name, the next value is assumed to be 1 higher.

For each valset type, the names defined must be unique, not the same as a variable or other
item, and no two names will have the same value. No overlapped values are allowed.
Arithmetic on valset values is not allowed.

The value names cannot be assigned into a variable using a different valset type.

Valset constant names can be used in more than one valset type.

A valset type definition may appear in or outside an object or layout definition. It shall not be
defined in a static storage area.

Valset value names are not permitted as array indexes.

Each valset declaration implicitly creates an associative array which is a static array. The array
for valset VSet (for example) is named Values which has string indexes and uint values,
addressed as VSet.Values.

Page 40 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Valset Values in a Variable or Array
One usage of valset is to declare that a variable can be assigned values from the list. The
variable can then be tested for equality with a name from the valset, or the names can be used
in a switch statement. The maximum value is 2_147_483_647, which is the maximum positive
value for an int.

Items in a valset variable cannot be compared to integer values. An empty or uninitialized
valset data value has a value of 0, which may or shall not match a named value. The function
isZero can be used to test for zero.

For example:
assigns unknown = 0, bicycle = 1, auto = 5, truck = 6 ----
valset vehicles unknown, bicycle, auto=5, truck
declare an array:
vehicles[] rigs # takes vehicle values only, with integer indexes
rigs = vehicles[auto,truck,truck,auto] # assign 4 values from array constant
rigs[2] = bicycle # change the third value
another example - -
valset Tstat closed, reading=8, writing, open=15 # values are 0, 8, 9, 15
valset DoorStats open, ajar, closed # note the apparent name conflicts
DoorStats frontDoor
frontDoor = ajar
@ vehicles.Values['truck'] # prints: 6

Page 41 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Layouts and Bit Fields
A layout is a description of a set of consecutive bit fields in a binary value. It describes the
parts of an unsigned integer, up to 64 bits in size. The size of the layout must be a valid size of
a uint item.

A layout is an object type with restrictions. It defines a sequence of bit fields, named or
unnamed, laid out left to right, with optional values for each field. It can contain valset
declarations which provide named values usable in the fields.

The bit fields in a layout are public and can be set or retrieved.

The form of a layout declaration is:
{ layout layout-type-name [size]
 [valset declarations]
 [field declarations]
}

The size is 8, 16, 32, 64. If not specified, a size is chosen.

The field declarations define bit field sizes, from left to right. The bit position is not identified.

A field declaration can have one of these forms:

• an unnamed field of nn bits size, default value is zero-valued bits:

nn [value]

• a named field of nn bits size with an integer or bool value:

nn [type] name [value]
where type can be uint, int, or bool; uint is default type. Size nn for bool must be 1.
A 1-bit field cannot be type int.

• a named field of nn bits size with a valset value:

nn valset-type name [value]
where the default is a valset value and nn must be suitable for the valset value.

A sequence of fields of the same size can define several fields. Example:

5 uint R1,R2,R3
4 int x1, uint x2

Missing bits on the right are unnamed and assumed to be zero-valued.

A layout name can be used like a type cast on a uint, int (any size) or float. For example:

int signedVal = -2
{ layout chkSign
 1 bool Neg
}
if signedVal.chkSign.Neg then @ "value is negative."

Also, a variable or array or procedure can have a layout name as a type. In this case, a size is
required.

Page 42 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Layout Constants
A layout constant has a form resembling an array constant. It is a layout type name followed by
a square bracket-enclosed set of field names and values. The layout name can be omitted in
initial values if it is discernible.

Example of a simple 8-bit layout and a constant definition:
{ layout control 8
 1 bool start=false
 3 # unnamed zero bits
 4 secs
}
control starting =[start=true, secs=6] # defines bits 1_000_0110B8

Page 43 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Strings
A string is an object. Strings are immutable. The bytes in a string are numbered from 0.

A string's length is limited to a positive value that fits in an int type variable, about 2 billion
bytes.

Strings are not fixed length. There is no separate "character" or "char" type.

Like arrays and defined objects and structures, strings are a reference type. String values are
immutable.

A string of length 0 (a constant such as '' or "" (a pair of apostrophes or quotation marks) has
Count value of 0 and it does not test as nil. A string which has no assigned value tests as nil
and also has a Count value of 0.

The characters of a string can be indexed using an array subscript notation. The first character
has index 0. A negative index counts from the end; -1 means the last character.

A string slice is expressed in the form abc[start:end] where start and end can be positive or
negative, and abc is a string variable, not an expression. Omitting start in a slice is the same
as specifying 0, and omitting end is the same as indicating the last character or -1.

A substring is extracted using the form abc[start for num] where start can be positive or
negative, num is positive and nonzero, and abc is a string variable, not an expression. The
start position is the first character, same rules as a slice, and cannot be omitted. The length of
the result is num.

Invalid start or end or num yields a zero-length string.

Examples:

string st = "abcdefghijk", xyz
xyz = st[0] # sets xyz to string 'a'
xyz = st[-1] # sets xyz to string 'k'
xyz = st[2 for 4] # sets xyz to string 'cdef'
xyz = st[-3:] # sets xyz to string 'ijk'
xyz = st[:4] # sets xyz to string 'abcde'
xyz = st[-6 for 5] # sets xyz to string 'fghij'

Strings are implemented with structure @String.

Page 44 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

String Constants
String constants are enclosed in apostrophes (') or in quotation marks (") or preceded by a
grave accent. The difference is that a string constant enclosed in quotation marks permits
escaped character sequences as listed in the table below and it also allows simple insertions
from any expression that can be typecast to string. The insertion is denoted by enclosing the
expression in curly braces.

If a string constant begins with an apostrophe, an embedded apostrophe must be preceded by
a reverse slash. Similarly a quotation mark embedded inside a string constant which starts with
a quotation mark must have a preceding reverse slash.

A string constant which has no embedded blanks or insertions or special codes can be written
with a prefixed grave accent. It does not require a closing grave accent. It may not contain a
grave accent. These are called simple string constants.

A simple string constant ends when a blank, a comma, a right parenthesis, a comment mark,
or the end-of-line is encountered. It may not be zero length.

Here are some examples:

`A `! `Status `* `User-ID

Table: Escaped Characters in a String Constant
Escape Chars: Meaning:

\n
\r
\f
\t
\\
\{
\dd

End of line
Carriage return
Line feed character
Tab character
Reverse slash
Left curly brace
Hexadecimal value dd, 2 hex digits dd

There is no escaped character support for the BELL or VERTICAL TAB or FORM FEED codes
or other holdovers from teletype days.

There are no decimal or octal or binary character codes in a string; only hexadecimal.

A reverse slash before any other character is retained as a character in the string.

These insertions are recognized only when enclosed in quotation marks.

Page 45 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

String Operators
String values are concatenated with a vertical bar operator, as in:

a = a |'*'
a |= `* # another way to do that

There are special operators for strings. The "after" operator <: sets s2 to the remainder of the
string s1 after finding the left operand, "value":

s2 = "value" <: s1

The "before" operator :> sets s2 to the value in s1 up to (before) the right operand, the
exclamation:

s2 = s1 :> "!"

The searched value is pointed to by the angle bracket. These can be combined to obtain a
"between" expression:

str = 'abcdefghijklmnop'
between = 'efg' <: str :> 'mno' # yields 'hijkl'

The string split operator, a slash (like divide), splits the left operand using the right operand as
a separator. The result is an array of strings:

string ident = "dept-group-member"
string[] idparts = ident / `- # yields array: ['dept','group','member']

String Expressions
Concatenation example:

string drink = 'tea'
string tasty = 'iced '|drink # concatenated

The characters of a string are numbered from 0, counting bytes, not Unicode "code points".

A string can be indexed with a subscript like an array.

Assignment copies a reference. The strings point to the same value

Strings can be compared with the comparison operators. To be equal, the length and all
character values are the same.

Page 46 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Table: Built-in String Functions
Function: Description:

ByteValue(uint.32 n)
Caps
Copy
Count
Each
Find(string s)
FindRight(string s)
Lower
Replace(string s1, s2)
Reverse
Trim
TrimLeft
TrimRight
Upper

Value of a single byte of a string, as a uint.8
String, the first letter upper case, the rest lower, in each word
Returns a copy of the string, not a new reference
Length of the string, the number of bytes, type int.32
A generator function
Position (int.32) of the first substring s, -1 if not found
Position (int.32) of the rightmost substring s, or -1 if none
String returned with all letters lower case
String s returned with each substring s1 replaced with s2
String with characters reversed, not preserving Unicode chars
String returned with leading and trailing spaces removed
String returned with leading spaces removed
String returned with trailing spaces removed
String returned with all letters upper case

The built-in string functions are defined in the standard library std/string. Note that Count is
also an array function.

Caps, Lower and Upper only change the case for the twenty-six letters A through Z.

Trim functions remove spaces and also \n (LF), \r (CR) and \t (TAB) codes.

Examples:
string s = 'abcdefghij', ss, st
int pos = s.Find('def') # set to 4
ss = s[:7] # truncates to 8 characters
st = 'b'<:s:>'h' # gets 'cdefg' substring
string txt = 'apple, peanut, cheese '
set array words with 3 strings: 'apple', ' peanut', ' cheese '
string[] words = txt/',' # split, then need to trim words
words = words.Trim # trim each of the words

Page 47 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Typeset Specification
A typeset_spec identifies a named set of types which can be used to indicate which types are
supported by a procedure. It is specified with the typeset keyword, for example:

typeset arithType = int uint float

The typeset name arithType above represents a type which can be int, uint or float. The
specified types allowed must be predefined (basic) types or an asterisk, which means any
object type.

A restricted size (like uint.16) may be specified for types int or uint.

This may be specified in an object definition.

The typeset_name is available as a type name in procedure and other definitions in the object
or global definition. Any of the eligible types for that name will qualify for that usage.

The base_type on a procedure definition can specify which types are permitted by naming the
typeset_name in the base type or as the type of a parameter or as the result type or an index
type.

The standard library file std/typesets defines several usable typeset names.

Page 48 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Procedures: Functions and Methods
A function returns a value or reference, and thus can be used in an expression. It is invoked by
naming an object on which it is defined, followed by a selector period, then the function name,
then parameters, if any, in parentheses. The object is an implicit parameter to the function. A
function may have no parameters and no parentheses.

A method does not return a value. It is invoked like a function, except that no parentheses are
used when there are parameters.

Functions and methods (these forms are called procedures in CB) are defined in an object
type definition, except when they are with no base type specified or a basic type or known
valset type they can be defined outside an object.

Passing Parameters to Procedures
A procedure may be invoked upon an object. The object is then implicitly passed as a
reference parameter internally referred to as $.

The procedure name is applied to the object by placing the procedure name after a selector
period on the right of the object.

A function with no parameters, or with all parameters using defined default values, is invoked
with no parentheses.

A method never uses parentheses on its parameter list, even when parameters are passed.

Page 49 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Declarations
A declaration is a non-executable statement or construct. A declaration defines the type and
use of names in the language. The following are declarations:

• A type declaration defines variables, arrays, lists and functions.

• A new object type or structure definition.

• A valset declaration.

• A named constant declaration.

• A typeset declaration.

• A procedure definition.

• A constructor declaration.

• An operator declaration.

• A type cast declaration.

• A layout declaration.

• A pragma declaration.

Page 50 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Declaring Variables and Arrays
Places where declarations (other than objects and procedures) can be declared:

• In a block, also a switch case block.

• In an object definition.

• In a procedure definition.

• Variables for the index and value are implicitly declared, with limited scope, in a for
construct. The index is the index type of the array. The value is the same type as the
array.

• Variables are declared with type information before them. Examples:

int number
string name
bool test

• Arrays are declared with square brackets after the type. All members must be the same
type and all indexes are uint or int or string.

• Variables and arrays can have initial values specified after the name. Examples:

int mnx = 23
string[] ap = ['start','stop'] # indexes are 0, 1
uint.64[string] salary = ['CEO':250_000, 'analyst':45_000]

• Variable names and procedure names in an object (the same name space) must be
distinct. However, a variable can be the same name as a procedure which is defined in
a different name space, and vice versa.

• Valset value names are in separate name spaces for each valset.

Page 51 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Named Constants
A named constant declaration defines a name which can be used for a constant value. This
declaration can appear in or outside an object declaration, or any block. It has the following
form:

[access] const name constant_value [, name constant_value ...]

Within an object type definition, access is public unless shared or private is specified as
access. Access in a block is local to the block and cannot be specified.

The type of the name is the type of the constant. Non-basic (object) constants must show their
type.

The defined name by convention is all capitals where letters are used, but this is only a
recommendation. Predefined named constants begin with an underscore and an uppercase
letter.

The constant_value is a single constant of the declared type.

Examples:
const MAX_TIMES 100, INTEREST 0.035
const PROMPT 'User ID? ', BETA 4.336E0

Named constants defined outside any object have global scope. For example, the
mathematics constants pi (p) and e and others are defined as float values to a large number of
digits by these lines (shown truncated) in a global definition in the library std/math:

const _PI 3.1415926535897932384626433832795
const _E 2.71828182845904523536028747135266
const _LN_10 2.30258509299404568401799145468
const _ONE_DIV_LN_10 0.43429448190325182765

Page 52 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Statements
A statement is a single line executable action, or a multi-line executable construct.

Statements are only allowed in a procedure, including a method, function, generator function,
operator definition, type cast definition.

Statements which control the flow of execution, meaning the progression from one statement
to another, are called control statements. These are the if, for and switch constructs, the
block construct, subordinate statements case, else, final, while, until, return, if, break and
repeat.

Other statements involve variables and arrays and procedures and expressions. These are:

• The assignment statement uses the assignment operator =.

• The incrementation statement is actually a simple expression using the postfix
incrementation (++) or decrementation (--) operator. The side effect change makes this
also a statement. It is considered an assignment when it stands alone.

• An array assignment.

• A method call is a statement.

• A function invocation can be a statement if it stands alone, not in an assignment or
expression. The result is ignored.

• A construct is considered to be an executable statement.

Page 53 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

If Statement
An if statement has the form:

if bool_expression statement

where bool_expression is a scalar expression that evaluates to true or false, and statement is
a single executable statement, not if and not a construct. The statement can be an assignment
or incrementation or a method call, which must be preceded by then, or it is one of the
statements break, repeat or return. It cannot be a block, if, while, or until.

If Construct
The if_construct has the following form:

{ if bool_expression
statements

[else if bool_expression
statements]...

[else
statements]

}

A bool_expression is a scalar expression that evaluates to true or false. There is no statement
or keyword then after the bool_expression.

Keyword else is not a statement, but begins a section of the construct.

Additional conditions (else if) are allowed after the first one, and before optional else. If the
first if condition fails, it tries the next, etc., then the else section is executed if all fail. These
have the word else before if. Only one of the conditions is executed, the first to be true.

Note that the similar-looking if statement is considered a single statement, not part of a
construct.

Page 54 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Switch Construct
The switch construct provides a selection of alternative actions, somewhat like a conditional
block.

It has the following form:
{ switch expression
case constant [,...]

statements
[case constant [,...]

statements]...
[else

statements]
}

The expression on the switch must be an integer or string or valset expression. It shall not
be an array. The constants on the case lines must all be the same type as the switch value.
String constants must not have value inserts.

The expression in a switch statement is evaluated once, then execution proceeds to the case
or else which matches the value of the expression. The following statements (the case_block)
are executed. Execution goes to the ending curly brace if it falls through the statements into a
case or else, rather than fall through into the following case block.

The break statement can be used to override the flow of execution. A break sends control to
the ending curly brace.

No statements are allowed between switch and the first case or else. There must be as least
one case block in the construct, not just else. Statements which are not allowed in a switch
block or case block except inside a contained looping block: until and while.

An empty block after a case or else does nothing. It immediately exits the switch.

The set of constants must not have any overlapping values.

A case line can list multiple values separated by commas.

The else block (which is like a case block) indicates selection of any other unspecified value. It
must follow all case sections.

Page 55 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Example of a switch:
int mv = 8, xlv
{ switch mv
case 1, 5
 xlv = 0
case 6,25,50,59
 xlv = 1
else
 xlv = -1
}

Page 56 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Block Construct
The block_construct is a block which does not loop. It does not contain a final block, and there
are no looping control flow statements (repeat or while or until or do or for) except break,
which may be conditional. It has the form:

{
 statements
}

A block with no loop:
{ int jxx = 1
 statements
}

A non-looping block may have declarations which are local in scope. A variable or array
declaration may be on the same line as the initial curly brace.

Page 57 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Do Construct
A block with a do statement on the first line is a looping block. It may have a final block.

{ do [initializations] [while_until_statement]
 statements in the block
[final
 statements]
}

The initializations following do are executed once only. Any variables or arrays defined in the
initializations have scope over the entire construct. Control flow goes back to the line after do
from the end of the final block (or right curly brace) or to the while or until specified on the do.
Initializations follow the rules for declarations.

The statements after final are executed every time through the loop. A repeat sends control to
the final block. This is where an incrementation is placed.

Example of a loop:
{ do int k = 1024 until k =? 0
 # statements here
final
 k = k/2
}

This loop assigns a value to k once, then repeats the statements in the block, dividing k by 2 at
the end, and goes back to until after the do. Since type int for k is specified, the variable k
has local scope in the construct. The loop terminates when k is zero.

A simple loop example:
{ do while test_expression
 statements
}

If a variable is not typed in the initializations and it is assigned a value, it must be a valid
existing typed variable, and the value is retained after the end of the construct for its normal
scope.

If it is declared with a type it has that type and has scope local to the construct and the
initialization is done once at that point. The value is not retained outside the block.

While or until may be placed after initializations on a do or anywhere after that as a statement
in the do or for construct before the final block.

Page 58 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

While
The while statement has the form: while test_expression

The test_expression, a scalar expression of type bool, is evaluated and control does a break
to the final block or the ending curly brace if the expression is false. The presence of a while
makes the block a loop. The while statement is equivalent to:

 if not (test_expression) break

Until
The until statement has the form: until test_expression

The test_expression, a scalar expression of type bool, is evaluated and control does a break
to the final block or the ending curly brace if the expression is true. The presence of an until
makes the block a loop. The until statement is equivalent to:

 if (test_expression) break

These statements are valid only in a do or for construct and an inline for.

Page 59 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

For Construct
The for construct loops through an array or string or any object based on a traversable
structure, handling each value. An array can be used:
[1] { for valu[[k]] from array_expression

block
[final

block]
}

The expression is evaluated once. Then each element of the array is extracted, assigning the
(local scope if not already typed) variable val the value, repeating the block. The type of valu
defaults to the same as the array type. The type of k is defined by the array. Only the array
elements which exist (the index exists) are used. Values are presented in index order, with or
without the index k.

Example of [1]:
float[string] cost = ['notebook':2.55, 'pen':0.77, 'paper':1.98]
{ for cost[item] from prices
 @ "item={item}, cost={cost}"
}

A string can be used also, similar to an array. Variable valu will be assigned each character, left
to right, as a single character string. Unicode characters are not recognized.
[2] { for valu [[k]] from string_expression

block
[final

block]
}

The expression is evaluated once. Variable valu will be assigned each byte, left to right. The
local scope variable k is assigned the position of the byte and implicitly local (or previously
declared) variable valu gets the value, as a type string, repeating the block. The assumed
type of optional variable k is uint.64, and k will begin with 0. Variable k has local scope to the
block or it may be predeclared. The string expression is evaluated once, and cannot be altered
in the block.

A traversable object can be used:
[3] { for valu from _Traversable_object

block
[final

block]
}

Any object obj which is an array or has a shape based on the abstract structure @Traversable
can be used in a for construct. The for construct internally expands to initialize with the object,
then increments (or iterates) using Next, and it stops when no Next value is found.

Page 60 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

For any traversable object, such as an array, the construct:
{ for item from obj # the type of obj is type
 block
}

internally expands into:
{ do type item = obj.First while item.isNotNil # initializes once

 block
final
 item = item.Next

 }

To make this statement go through a list, for example, the initial obj is the first item of the list.
The variable item is a name of local scope, same type as obj.

Also, a generator function can be used.
[4] { for valu from object.generator_function

block
[final

block]
}

This repeatedly calls the generator_function returning a value until it returns nil or falls to the
function end, which causes a break.

Page 61 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Final Block
A final_block can be used in any looping construct or do or for construct.

The keyword final marks the start of a final_block. The purpose of the final_block is to allow
actions at the end of each iteration of a looping construct, such as incrementation.

Immediately following the block in the looping construct, a final statement introduces a
final_block, the (non-empty) block of statements after keyword final. This block of statements
remains part of the block for name scoping. Execution flow falls into this final_block, through
the final statement. Any incrementation or other action may be placed in the final_block if it is
to be done at the end of each loop.

The final_block is executed on every repetition of the loop.

An empty final_block can be omitted.

A repeat statement in the block before final transfers to the final_block. A repeat is invalid in
the final_block.

A break statement anywhere in the construct exits the loop.

Page 62 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Repeat Statement
The repeat statement is valid only inside a looping block or do or for construct, and is not valid
in the final block portion. It causes execution to skip over statements to the final block or to
advance to the next array element. In other words, to the incrementation, the final block if it
exists, or the next containing right brace at the block end on the nearest containing loop block
or for construct.

Break Statement
The break statement is used to exit the nearest containing loop, do or for construct or switch
block. It is typically used to exit a loop when a condition is reached. It is not used for a
procedure body exit.

Page 63 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Return Statement
The keyword return is valid in an object definition. It can be used in a procedure body as a
statement.

In a method, it returns control to the point after the method call.

In a method, the return statement has no parameter; falling into the end of the definition
causes an implicit return.

In a function definition, the return statement has the form:

return expression

where the expression is the returned value of the function.

In a function, the last statement in the function must be a return with a value.

A generator function which has control falling into the end of the block implicitly returns nothing
and ends the generator. Also, it ends when a statement return nil is encountered.

Control Flow Limitation
No executable statement may appear immediately following an unconditional control statement
which breaks the normal flow of control.

In other words, a statement is not permitted after return, break, or repeat.

This rule does not apply to the return statement in a generator function, nor to the above
statements on an if statement.

Page 64 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Blocks
A block acts an executable statement. The block can contain declarations and statements,
intermixed. The statements and declarations are performed in order, from the top, unless a
control statement changes the order of execution.

The names defined in a block have scope from the definition to the end of the block. If private
access is specified, the scope does not extend to inner blocks.

Blocks are:

• The for construct or block construct includes the entire construct and the block
executed. It also includes the final_block.

• The case_block is all of the statements and declarations from case or else in a switch
until case or else or the end of the switch.

• The switch_block is all of a switch construct. It includes the expression on the switch
statement plus all of the enclosed case or else blocks. Declarations have scope in the
switch block where they appear.

• The conditional_block is all the statements in the braces.

• The procedure_block is all statements and declarations in a procedure definition. This
begins at the start of the prototype portion and ends at the procedure end. This applies
also for properties, operator and type cast definitions and for a constructor.

• The final_block is the statements after final, in the following block. It is not a true block
because it is part of the same scope as the construct.

Page 65 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Defining Objects
An object is a named entity which has values, procedures and other functions within it. Objects
are used to encapsulate data and functions, hiding details.

The object name becomes a type, an object_type, which is used to declare variables and
arrays and procedures, etc. An object_type is analogous to a 'class' in many other languages.

An object can inherit another, gaining its functions and data. Multiple inheritances are
disallowed except for inheriting abstract objects, indicated by a question mark for the
object_option.

Object definitions cannot be nested or internal.

A new object_type is defined in the following manner:
{ object [object_option] object_type [uses [object_type] [abstract_object...]]
 [typeset declarations]
 [valset declarations]
 [layout definitions]
 [variable and array declarations]
 [procedure definitions]
 [operator definitions]
 [type cast definitions]
 [prototype definitions]
 [constructor definitions]
 [pragma declarations]
 [static area, values and procedures]
}

The inherited object_type can also be one of the basic types (int, uint, bool, string, float) or a
valset type. This becomes an enhanced_type object definition.

The object_option final implies the object cannot be inherited.

Abstract Objects
When object_option is abstract the object is abstract. An abstract object has no data, and no
definitions for procedures, operators, type casts or properties. It can inherit only other abstract
objects. It can contain the following:
 [typeset declarations]
 [valset declarations]
 [layout definitions]
 [constant definitions]
 [procedure prototypes]
 [operator prototypes]
 [type cast prototypes]

Page 66 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Defining Structures
A structure defines a special form of an object which has one anchor storage area and any
number of linked leaves, or leaf storage areas. It is used to define a shape. A structure_id
defines the storage of the whole structure and its parts, or storage areas. A structure must
define anchor and leaf areas, in that order. No other data is defined in a structure except in an
optional static area.

A structure_id is not an object_type, but it can have a static area.

Structure definitions cannot be nested or internal.

A new structure_id is defined in the following manner:
{ struct [abstract] structure_id [[index_spec]] [uses [structure_id][abstract_structure...]]
 [typeset declarations]
 [valset declarations]
 [layout definitions]
 [constant definitions]
 [pragma declarations]
 [static area, values and procedures]
 [anchor area, values and procedures]
 [leaf area, values and procedures]
}

The index_spec specifies that the structure_id defines an array or a matrix. It can take one of
these forms:

[index_type] - - - defines an associated index array
[uint var] - - - defines a one-dimensioned matrix (row, vector)
[uint var1, uint var2] - - - defines a two-dimensioned matrix

The inherited structure_id can only be a structure definition or abstract structure. Items in each
storage area are added to the same storage area.

Abstract Structures
An abstract structure is marked the option abstract after the keyword struct. It is like an
abstract object except all prototypes are contained in anchor or leaf storage areas.

Page 67 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Names in an Object or Structure
Variables and arrays and objects are declared in the form:

[access] type_name[shape] name [= initial_value], ...

Additional names, separated by commas, can follow when the type_name and shape are the
same, omitting the type and shape.

Access: Visibility of Names
Access is one of the keywords private or shared. If unspecified, names are public. It controls
the places where a name of a variable, array, procedure, function or an object are valid, or
visible.

Private
The keyword private means visible in the current object only. It means the name cannot be
seen in inheriting objects.

Shared
A shared name is visible in the object and in objects which inherit the object, but is not visible
outside the objects. The name is not visible from inherited objects. It is not public. This is like
the keyword "protected" in some other languages.

Public
When the access is not specified, the item is public and is visible across the object and any
inheriting objects and the member is visible as a member of the object.

Variables, procedures, arrays and structures in an object are public if no access is specified.
There is no reserved word (keyword) "public."

Page 68 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Storage Areas - Static or Anchor or Leaf
Within an object definition, variables, arrays, etc. of the object are normally allocated in each
instance of the object. Also, procedures in the object apply to and use these instance values.
Definitions of typesets and valuesets and constants apply to all parts of an object.

Within a structure object, all public data items must be in a storage area.

Procedures across all areas (static, anchor, leaf) of a structure are defined across the
structure, before the anchor area. No duplicates except overloaded procedures are allowed.
Procedures are defined outside of the storage areas. The anchor or leaf areas are like
unnamed objects.

Static Area
Variables, arrays and procedures (function, method or get/put property) in an object can be
defined in a static area. All static names are public; no proc_option is allowed.

This implies that there is a single copy accessible under the type name, not in an instance of
the object, but tied to the object type.

The static area in an object type is defined by this form:
{ static
 # variables, arrays, procedures in the static area
}

These static items are not accessible as members of a variable. Access is through the object
type name as a base. For example, static value val in object type ABC is referenced as:

ABC.val

Static values do not go away when objects are deleted or go out of scope. Static procedures
do not have an instance. They can only use static values.

A static area can be defined in structure objects or non-structure objects.

An object (not a structure) which has all data and procedures only in a static area is called a
static object, and it implies the final option. A static object cannot be used as a type, and
cannot define operators or constructors or type casts. Its contents are referred to based on the
object type name.

Page 69 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Anchor Area
The anchor area in an object definition is allowed only in a structure object type. Items in the
anchor area are shared as a single copy per structure variable or value, accessible across
linked leaves in the structure. These items describe the entire structure, and define a link to the
first or root leaf, possibly a count of members, and other items needed.

The form of the anchor storage area is:
{ anchor
 # variables, arrays, procedures in the anchor area
}

When a structure is created by a constructor, using the object type (structure) name, only the
anchor data is allocated. When members are added or deleted, they contain only the non-
anchor (node or leaf) values, and are found using the anchor. The anchor area values may be
updated, depending on their access.

Procedures in the anchor area affect the anchor content and are invoked with the structure
name as a base. The anchor contains at least one leaf reference name.

Leaf Area
The leaf area values are those which are in a structure, but not static and not in the anchor
area. The "leaves" are members or nodes of the structure.

The word leaf means a reference to a leaf, as if it is a type. It is also a constructor, referenced
as the object type, a period, and the word leaf.

The leaf area is defined similarly to the anchor area:
{ leaf
 # variables, arrays in the leaf area
}

New members (leaves) are allocated in expressions via a constructor. This adds only the
space needed for the non-anchor (leaf) data. These values may include a root or parent link,
left or right links as needed, an index if there is one, and the node value. For efficiency, these
items may be rearranged by the compiler.

A leaf constructor definition begins with the words new leaf.

The word leaf can be used as a type name inside the leaf area.

Procedures in the leaf area affect the leaf referenced by the link in the anchor area or a named
leaf variable.

The same procedure name can be defined in both anchor and leaf areas. They are different
procedures.

Page 70 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Structure Example
The following defines a simple structure called a Ring. This structure has no index, and no first
or last member. It is not traversable in a for construct because it has no first member.
 { struct Ring

{ anchor
 leaf Current # points to a leaf
 uint Count
 { method Clear
 Count = 0
 Current = nil
 }
}
{ leaf
 shared leaf fwd, back
 _DataType Data
 { func Next gives leaf
 if Count < 2 return Current
 Current = Current.fwd
 return Current
 }
 { func Prev gives leaf
 if Count < 2 return Current
 Current = Current.back
 return Current
 }
 { method Clear
 if Current.isNil return
 Count--
 { if Count.isNonZero # still has at least one

Current.back.fwd = Current.fwd
Current = fwd # advance to old fwd

 else
Current = nil

 }
 }
 { method Insert(dataType nData)
 leaf newLeaf = Ring.leaf # allocate one leaf
 newLeaf.Data = nData
 { if Count.isZero # empty ring

newLeaf.fwd = newLeaf
newLeaf.back = newLeaf

 else
newLeaf.fwd = Current
newLeaf.back = Current.back
Current,back.fwd = newLeaf
Current.back = newLeaf

 }
 Current = newLeaf
 Count++
 }
}

 } # end structure Ring

Page 71 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Object Values and Constants
Object values are constructor calls with parameters and values.

If the values assigned are constants, the result is an object constant.

The object type name is used, followed by a set of name=value assignments in a pair of
parentheses. All value assignments with a default value are optional and may appear in any
order. The names are defined by the constructor or defaulted to public variables and put
properties. Example:

{ object Animal
 string kind, says

}

Animal Tabby = Animal(kind='cat', says='Meow')

Page 72 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Global Definitions (Outside an Object)
Some definitions can be defined outside an object type definition. Object types must not be
nested. Definitions outside an object are called global definitions.

These definitions are allowed outside an object definition:
• object type declarations
• typeset declarations
• layout type definitions
• named constants
• valset type definitions
• methods with no base type specified
• functions and methods on a basic type, defined object type, a valset type or a

typeset

The names defined are global names, as if the global definition is inherited by every object.
Local definitions override. There are no global variables or arrays.

Methods defined which are not defined on a type have no base type. These methods are not
based upon any object. They shall not refer to $. A method with no base type cannot be
defined inside an object.

Procedures are allowed to access defined constants, and they are allowed to use basic type or
known or global type definitions.

Procedures defined outside an object but based on that object can only use public names and
properties in the object.

Page 73 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Inheritance
When an object type inherits another, it gains access to the public and shared variables,
properties and procedure definitions.

An object type definition can name a single parent object type to be inherited.

A variable V of a given object type T fits the words: V "is a" T.

If T inherits TT, then V "is a" TT also.

As an example, with V1 of type CAR and V2 of type SUV, and each of these types inherit a
type AUTOMOBILE, then we can say both V1 is type AUTOMOBILE and V2 is type
AUTOMOBILE. This allows a procedure to process either V1 or V2 as an AUTOMOBILE.

Every object (all things are considered "objects") implicitly supports this built-in function to test
or inquire about the object's type:

isType - - function, returns the type name as a string.

Page 74 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Instantiation of an Object
An object variable is a place-holder for a reference to an object. It is instantiated when it is
assigned a reference to an instantiated object value or object constant. Creating an object
constant using the object type also creates a value and instantiates the object. Assigning or
initializing a value inside the object also instantiates it.

The static components are instantiated when the object is declared.

Default Value at Instantiation
An integer or float variable has a default value of 0.

A string has a 0-length string and the value nil as default.

A bool variable defaults to false.

A valset variable defaults to a value of 0 even if no name is associated with 0. A value with no
associated name cannot be compared.

An object or structure has a default value of nil.

Page 75 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Enhanced Type Objects
The inherited object type can be one of the basic types (int, uint, bool, string). This becomes
an enhanced_type object definition.

The enhanced object is restricted in several ways:

• It can contain only one non-static public data member, of the same type as is inherited.

• It can contain static members, also constants.

• It can contain functions and procedures.

Like any inherited type, the new type is a type that is inherited. For example, a new type
Degrees which inherits float is also a float.

The enhanced object type is a way to specialize values, One enhanced type cannot be mixed
with another even though they both inherit the same type. For example, a Meters type and an
Inches type can inherit float, but they cannot be mixed by mistake. Functions may be provided
for conversion. Automatic type casting does not happen.

An enhanced type is permitted to be used as a value of the inherited type. This allows
mathematical functions to be applied. However, if an expression mixes types, the mix is
restricted. Addition and subtraction must use the same type, and the result carries the type, so
inches plus inches is still inches.

However, multiplication and division are allowed only with the inherited type. This allows
"scaling" or "discounting" to happen.

An enhanced type cannot be cast as its inherited type, losing the enhancement. This protects
from changing "units" like trying to type cast a metric Length to inches by using
Length.float.inches. The correct way is to provide functions or procedures which convert
directly.

An object which inherits an enhanced object type is not restricted. It may contain other data.

Page 76 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Properties
A property is a named object member which resembles a variable.

There are two kinds of property, get and put. A get property obtains a value; it is a readable
value. A put property stores, reads, replaces, writes or sets a value. It is used as an Lvalue. A
get property and a put property can share a name, which makes it appear like a normal public
variable.

A put property name cannot be used as a base value with a selector following because it
returns nothing.

When a property name is passed as a value to a procedure in a parameter, it is treated as an
expression value, using the get property.

A property name in an object has public or shared access, not private.

A property name can be the same name as a parameter name in a constructor.

A property cannot be overridden.

A property has no parameters.

A put property paired with a get property of the same name allows both read and write actions.
Without a get property of the same name, a put property acts as a write-only variable.

A property that is both get and put can be used with unary increment or decrement operators.

Defining a Property
A property name is defined by a construct like this:

{ property type_name name [return expression]
[
put
 action_block
]
}

There are no parameters, no access, no shape.

An optional get_property is defined by the return and expression on the first line. If there is no
put, the curly braces can be omitted for a short form get property.

A put_property is defined by put and the action_block. The first line of an action_block can
appear on the put line unless it is a block or construct beginning with a curly brace..

The name must appear as a value in an action_block. The name is evaluated once.

The action_block is usually an assignment statement to a local non-public variable, with the
put_name referenced on the right side expression, or it is a method call in the object, using the
put_name as a parameter. Additional statements are allowed; a return statement is not
allowed.

A put_property is used when the put_name appears on the left of an assignment.

Page 77 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Property Example
Define an object type Rect, with length and width, storing these in millimeters but showing
external values in inches.

{ object Rect
 const MM 25.4 # millimeters per inch
 private float len, wid # internal values are saved in millimeters

 # "read" (get) properties - - external is in inches
 func Length gives float len / MM
 func Width gives float wid / MM
 func Area gives float Len * Width # using the properties

 # "write" (put) properties - - external is in inches
 func float: Length len = Length * MM
 func float: Width wid = Width * MM
}

Page 78 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Defining Procedures
Procedures are defined inside an object definition. Procedure definitions cannot be nested.
They can also be based on a basic type.

A procedure can be defined on an array of any type by specifying an object type followed by a
pair of square brackets as a shape. The array index type must be specified to apply to a
specific type of index. The array type must have defined indexing.

For all procedure definitions, the base_type and its following colon can be omitted if it is the
object type currently being defined.

A procedure definition generally follows this form:
 [return] proc_kind base_type shape: proc_name (params) gives ret_type shape

where proc_kind is func, method, or new. Some parts may be omitted in some definitions.

The shape is used when the base is not scalar. It describes an array or structure.

Identifying the Base Type
In a procedure definition, the base_type is a type name followed immediately by a colon.

Inside an object type definition, the current object type is assumed as the base type for any
name defined in the object or inherited. The base type can be a basic type name or inherited
type name or omitted.

The base type name can be the name of another object type.

Page 79 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Procedure Overloading and Overriding
Within an object definition, procedures can have the same name, but differ in their parameter
specifications. One function Fun may have an int parameter while another Fun has a float
parameter. This is called overloading.

An object may inherit another object, and both define the same procedure. The inheriting
object is said to override the inherited procedure. If a procedure or property is a prototype,
there must be an overriding definition in an inheriting object.

Procedure Options
The proc_option on a procedure definition is an optional access word (private, shared) and
any of the keywords repeat or final. These words can appear in any order. Specifying repeat
is allowed only on a function, implying a generator function.

A procedure with the proc_option final or defined in the static area cannot be overridden. This
can appear with shared or (the default) public, but not with private.

A prototype describes a procedure which must be defined in an inheriting object definition. The
presence of a prototype implies that the current object definition requires a definition.

Page 80 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Methods
A method is a procedure with no returned value. It is used as a statement, and is not allowed in
an expression. The return type specification is not specified. The parameters are not enclosed
in parentheses. The form for a method definition is:

{ [proc_option] method [base_type[shape]:] name [params_spec,...]
 block

}

A method with no base_type cannot be defined in an object. In an object, an omitted
base_type defaults to the object type.

There is no short form.

Functions
A function is a procedure which returns a value, to be used in an expression. The form for a
function definition is:
 {[proc_option] func [base_type[shape]:] name [(params_spec,...)] gives ret_type[shape]
 block
 }

The proc_option keyword repeat implies it is a generator_function. Keyword final prevents the
function from being overridden.

An omitted base_type (and colon) in an object definition defaults to the object type.

The shape is used with a type. It describes an array or structure or both.

The params_spec (including parentheses) is omitted if there are no parameters.

The ret_type is the function's returned type. It must be specified, even if it is the base_type.

The ret_value is an optional returned value expression. If the returned value is shown, no
function block is used and the surrounding curly braces are omitted. This simple form of a
parameterless function is defined in a single line:

 [proc_option] func [base_type[shape]:] name gives ret_type[shape] ret_value

Page 81 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Constructors
A constructor is optionally declared in an object type definition. The constructor is called when
the object is instantiated, or when the object is initialized. A constructor appears in the object
type definition and has this procedure definition format:

{ new [(params_spec, ...)]
 block
}

A constructor is public. There is no base_type and the implicit function name type_name is the
name of the object type when the constructor is invoked as a function using the type_name as
a way to create a new object.

The parameter names may be the same as public names, or they must appear in the
constructor's block as references in an expression.

If there are no parameters on a constructor it will be invoked by default when an object is
instantiated. If a constructor is not defined, default instantiation occurs.

A constructor with no parameters is called by the object type name alone.

Constructors with different parameters are overloaded.

The statements can use temporary variables, etc., and they can access the items in the object.

One purpose for a constructor is to set static values and private members and perhaps open a
database or file.

A constructor must have statements in the block. The procedure block cannot be empty.

A constructor can be called with the "name=" omitted for each parameter. The values must be
in the order defined for the parameters.

Simple Constructor
A shortened and simplified constructor definition has the form:

new (variable=value,...)

or:
new

It has no block. It assigns public variables or put property names with the values as shown in
the parameter list.

Default Constructor
The constructor does not have to be defined. A supplied default constructor sets public values
by naming them in the parameter list with a default value. The default one is provided, with
parameters which are the names of the public variables. If all public names are to be given
default values, the default constructor is simply the type name.

Page 82 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Defining Operators
Most of the operators can be defined for object types, in the object definition. An operator
retains its precedence and its associativity. The bool operators and, or, not cannot be defined
or redefined.

The assignment operator (=) cannot be redefined for the basic arithmetic or bool types. For
objects other than structures, it defaults to copying all data. For structures, it defaults to
copying the anchor portion only. The default structure for array defines assignment to set the
current position to the lowest key value.

The binary operators +, *, -, /, |, & and ~ and the comparison operators can be defined by
creating a function with a base type as needed, a single parameter, and result type shown, and
in place of the function name the operator op is shown:
 { func [base_type[shape]:] op [type[shape] b] gives ret_type[shape]
 block

}

where type is usually the same in all three places. The base_type can be omitted, implying the
current object type. Types that are the same as previous can be omitted.

A simple definition can be in one line, as shown for addition of an int to an object:
Obj: func + int y gives Obj valu + y # valu is an int member in the object

Equality (=?) comparison is already defined to mean member-wise equality for objects, but can
be redefined for any named object type. It cannot be redefined for basic types.

If there is no parameter "type b" then op can be ++ or - -, defining op as a postfix operator, or
op can be + or - or ~, defining these as unary prefix operators.

It is not necessary to define subtraction if both addition and unary minus are defined. Similarly,
if =? and > are defined, all other comparison operators can be derived. Addition and
multiplication are commutative operators; if two types are used the opposite pair is inferred.

Operators cannot be redefined for the basic types bool, int, float or string. Defining an operator
does not change its precedence or its associativity. Invalid operations on basic types cannot be
defined. Postfix ++, for example, cannot be defined on bool or string.

Postfix or unary operators cannot be defined as binary operators and binary operators cannot
be defined as unary or postfix.

The returned value is a reference for a defined object type, and a value for a basic type. The
shape is used when the base is not scalar. It describes an array or matrix or structure.

Page 83 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Defining Type Casts
Similar to the definition of an operator, a type cast can be defined in an object. The following is
the form for defining how to evaluate abc.ret_type, where abc has the type base_type:

{ func [base_type:] gives ret_type
 block

}

Or, the simple form:
func base_type: gives ret_type return_value

Note that no function name or operator is shown. The ret_type is used like a function with no
parameters.

If the returned value is shown on the first line no block is used and the left brace is omitted.

The base_type is the type ending with a colon, the ret_type is the type preceded by a colon.
These types must be different.

The base_type can be a basic type so long as the ret_type is one which has no predefined
definition for the type cast, except you can define type casting to a string.

An array or a structure can be type cast if the data members can be the new type. The shape
is used when the base is not scalar. It describes an array or structure.

Example: a simple definition, in one line:
func Obj: gives string valu.string

Page 84 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Static Procedures
A procedure may be in the static area or in a static object, meaning it is invoked only by
referencing the object type name as a base. It shall not use $ in the body since there is no
instance. It may only use or modify static variables. A static procedure cannot be overridden (it
implies final).

Procedure Prototypes
An inherited abstract procedure must be defined in the inheriting object type. The abstract
procedure remains abstract in inheriting objects if not defined, carrying the required definition
to the next level.

The Return Specification
The return_value is not allowed for a method.

The return_value is an expression value to return. It may use constants and other values
known in the object or parameters of the function. Variables in the instance are accessible.

If there is a return_value expression, the function block must be empty, and the function
returns a value which is the expression.

The ret_type or param_type or base_type can be a basic type such as int, uint, float, bool,
string or it can be an object type name, and it can be an array specification (with type and
index type), a valset type name, or a typeset name.

When base_type is an object type, the procedure has access to shared or public internal data
and properties and procedures inside the definition and data shared from an inherited object
type. Private data is hidden unless the procedure definition is inside the object.

The base object is implicitly passed by reference, regardless of type.

Basic Object Type Procedures
A basic_object_type procedure is not based on a defined object type or valset type. The
base_type can be a basic type (int, float, etc.).

A procedure can be defined with no base type. It has no object members or values.

The object value can be referenced in the procedure block as $.

Page 85 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Parameters Specification
The parameters specification params_spec defines the expected parameters for a procedure.

The params_spec is omitted when there are no formal parameters, or it is:
param_type[shape] param_name [= constant_expression]

for each parameter. Parameters are separated by commas. The parameter type param_type
can be omitted if it is the same as the previous param_type. The first parameter type can be
omitted if it is the same as a function or operator type.

The shape is used when the base is not scalar. It describes an array or structure or a
combination.

An array or string or stack or valset type or named object or structure type by default is passed
by reference. A reference item can use the function Copy on an actual parameter to force a
reference item to make a copy then pass a reference to the copy.

All value variables (types int, uint, float, bool) are passed by copy. An array element passes the
value by copy. The array is not changed when a copy is passed.

A property always passes a get value as an expression, and a put property cannot be passed.

A variable passed by copy delivers a temporary copy to the procedure. If the procedure alters
the copy, the original is preserved.

An expression always passes a copy. An item enclosed in parentheses is a simple expression.
An array value or constant passes a copy.

A parameter declared to have an object type implies the actual parameter is an object of that
type or it inherits that type. Types are not automatically cast, but a shorter int or uint will
automatically widen.

Parameters which are variables may have a default value expressed as a constant expression
in the procedure definition. Any such parameter can be omitted in a reference if it has no
following explicit actual parameter which has no default value. The value passed is the value of
the constant expression.

If all parameters have default values, an invocation can name any of the parameters in any
order, specifying the name, an equal sign, and the value. This applies also to constructors.

Page 86 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Access
Access is the degree of encapsulation, or the accessibility of names in an object.

The keyword private is allowed as access on a procedure definition inside an object or
structure definition. It means it will not be visible in inherited types.

Property items are like variables in appearance, but may in fact be implemented as a
procedure, or they may be implemented as a public variable if the compiler finds this is safe.
They are possibly limited to read-only or write-only access.

Shape Specification
A shape specification is used when the base is not scalar. It describes array indexing or a
structure.

A structure shape is specified with a structure_id enclosed in angle brackets.

An array specification implies the procedure or parameter is an array. It follows the same rules
as a definition of an array.

The Procedure Body
The statements in the procedure (the body) define the actions and internal variables used. In
place of these statements, the reserved word pragma can be used. It has parameters which
indicate the implementation is defined by another language or by externally provided code, or
code known to the compiler, or it may indicate conditions governing the compilation, such as
inline code generation.

Page 87 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Generator Functions
A generator function is defined with the keyword repeat as a proc_option.

It can be used only in a for construct or the right side of an array assignment.

A generator function returns ("yields") a value using the return statement. Each time it yields a
value, the current state is preserved, and when invoked again, it resumes where it left off. It
finally quits, indicating an end to the set of values, when it encounters return nil or the function
end, which then returns an indication that it is done.

A generator is a function, not a method.

A generator can be used as an array of the values returned.

Range
A generator function Range is supplied. It returns a sequence of int.64 values. It is used with a
base specified, with these two optional int.64 parameters:

start default is 0.
by default is 1; nonzero; if negative, the base (stopping value) must be <= start.

The base is required, it is the stopping value. Range stops if at or beyond this value in the
direction implied by the sign of by.

If these are invalid, Range is unable to produce a value, and reports an invalid range.

Range can be used as an array of the values returned.

Examples:

int.64[] ABC
ABC = 10.Range # sets 10 array elements to 0 through 9
ABC = 11.Range(start=1) # sets values 1 through 10
ABC = 12.Range(start=2, by=3) # values 2,5,8,11 but not 14
ABC = (-6).Range(by=-1,start=5) # values 5,4,...,-4,-5

A combination of Range and an inline for expression can be used for "list comprehension", as
in this example:

int[] sels
sels[] = (for x from 101.Range if x^2 > 3)*2 # yields 4, 6, 8, 10 ... 200

Each
The Each function is a generator. It can be used on a string or array or any traversable object.

Page 88 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Invocation of a Procedure
A procedure defined on a given type is invoked by naming an object of that type, then the
period (selector character), then the procedure name with parameters as needed.

Invocation of a method will not use parentheses around the parameters.`

A function invocation does not use a pair of parentheses when it has no parameters.

If there is no base_type the base and the period are omitted.

When a function returns a reference to an object, that object may have other procedures or
variables. A function invocation can then be followed by a selector period and another
reference. Invocations can be nested/stacked.

The base object (on xyz.MethodCall for example, the base is xyz) acts as if it is passed as a
parameter named $, which is passed by reference. When the base is a constant, a basic type
value or an expression in parentheses, a reference to a copy is passed.

When an expression of any kind is passed as a parameter, a copy is passed rather than a
reference to the original value. This applies even for a parenthesized item, or for type casts, or
for a unary plus. In other words, (abc) is a copy of abc, as is +abc.

A structure or defined-type object or array or matrix is passed as a parameter, a reference is
passed.

When an array or matrix element (member) is passed, the value is passed, not a reference.

A string or any basic type, passed as a parameter, is passed as a value or copy, not a
reference.

Page 89 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Built-in Object Procedures
These procedures can be applied to any object, variable, stack or array, treating them as
objects.

Table: Built-in Object Procedures
Procedure Kind Result

Clear
Copy
getIndexType
getName
getType
getValue
getValuesArray

isNil
isNotNil
isType(string s)

method
function
function
function
function
function
function

function
function
function

the named object is destroyed
a copy of the item
string, the type name of an associative array's index
string, valset constant name for value in variable
string, name of the type of the object
uint value of the valset constant
returns string-indexed array of values in the valset type
used as base
true if the base reference is nil
true if the base reference is not nil
true if the object type or its inherited type matches s

Type names are returned in the same case they are defined. In the case of a valset, it returns
"valset typename", a defined object as "object typename".

The functions getName, getType, getIndexType, getValue and getValuesArray are reflection
functions or get properties. Reflection in CB is the ability to retrieve attributes of an object.

Page 90 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Name References in an Object
Names within an object or inherited in an object are referenced without need to imply they refer
to the current instantiation or static item. If a name overrides the same name, it is possible to
refer to the parent's version by prefixing it with a selector period and the object name inherited.

Example:
{ object ABC
 string x = 'Hello'
}

{ object DEF uses ABC
 string x = 'World'
 { new # constructor
 @ ABC.x | ', ' | x | '!'
 }
}

 # use it -
DEF hi # prints: "Hello, World!" on instantiation

Within an object, a reference to the whole object is written as the keyword $.

Page 91 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Prototypes
Prototypes define the usage of procedures, operators and type casts. An inherited prototype
must be defined as a procedure at a subsequent level of object or structure. They are used in
in abstract object and structure definitions, and are permitted in non-abstract definitions,
indicating a requirement. The base_type is not shown in a prototype.

A prototype begins with a question mark. A property cannot be a prototype.

Function Prototype
? [proc_option] func name [(param_spec , ...)] gives type

Method Prototype
? [proc_option] method name [param_spec , ...]

Type Cast Prototype
? func gives type
note that there is no name

Operator Prototype
? func operator [param_spec] gives type
note there are no parentheses

Page 92 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Pragma Declaration
The pragma reserved keyword introduces a declaration which informs the compiler about how
to compile code. Following the keyword pragma are special options and code generation
instructions. Some of these may be restricted only to source from standard directories or not
available except in standard code.

Some features to be implemented:
pragma use # bring in precompiled objects - NOT source code, and

 not allowed inside objects, procedures, or any definition
pragma adapt [function] - using as a procedure body allows any code
pragma inline # makes this procedure expand inline, no procedure call used

Certain behavior defaults for generated code or optimizations are controlled by pragma:
pragma option ...
pragma unroll

Page 93 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Printing Strings
The standard library std defines some built-in procedures. One method which is defined is
named @. This method takes a single parameter, a string, and writes it to the standard output
stream or back to the connected browser or other connection with end-of-line character(s)
added to the end of the output string.

Example:
string helper = 'Watson'
@ "Come help me, {helper}, I need you!"

Note the string insertion in the message.

These method names are not reserved words. They are defined as single string parameter
methods with no base type specified.

Hello, World! Program
The standard "Hello, World!" program in CB is very simple:

{ object @Main
 { new
 @ "Hello, World!"
 }
}

It is automatically invoked by its constructor:
@Main

The constructor can have parameters.

Page 94 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

The CB Programming Language

Example
The example shows an object type named Animal, inherited by objects named Cat and Dog:

the object Animal - - -
{ object Animal

 string animal_name = 'unnamed', sez = 'I am an animal.'
 { method Speak
 @ "{$.getType} {animal_name} '{sez}'"

 }
}
animals Cat and Dog
{ object Cat uses Animal # overriding method Speak for Cat - - -
 { method Speak
 @ "{$.getType} {animal_name.Caps} says \"Meow!\""

 }
}
{ object Dog uses Animal # overriding Speak for Dog
 { method Speak
 @ "{$.getType}: {animal_name.Upper} says \"I am a canine.\""

 }
 }

a snake -
{ object snake uses Animal
}

 # the program - - -
{ object @Main
 { new

Cat Fluffy = Cat(animal_name='FLUFFY'), Tom = Cat(animal_name='tom cat')
Dog Fido = Dog(animal_name='Fido')
snake Coral(sez='s-s-s-s')
Animal Buddy
Animal pets[] = Animal[Fluffy, Tom, Fido, Buddy, Coral] # an array
{ for who from pets
 who.Speak
}

 }
}
expected output -

 # Cat Fluffy says "Meow!",
 # Cat Tom Cat says "Meow!"
 # Dog: FIDO says "I am a canine."
 # Animal: unnamed 'I am an animal.'
 # snake: "s-s-s-s"

Page 95 - Copyright © 2009-7/5/20 • All Rights Reserved • John T. Bagwell Jr. of Sandpoint, Idaho

	Copyright
	Author
	The CB Programming Language
	Some of the Features of CB
	Omitted Language Features
	Source File Format
	Libraries
	Table: Standard Libraries
	Terminology
	Reserved Words
	Table: Reserved Words
	Names
	Special Names ! and @
	Main Program
	Settings
	Blocks and the Scope of Names
	Data Types Supported
	Integer
	Table: Integer Value Ranges
	Float
	Bool
	String
	Valset
	Complex

	Table: Mathematical Functions
	Table: Complex Mathematical Functions
	Value Types and Reference Types
	The Value Nil
	Objects and Inheritance
	Selection
	Expression Operators
	Table: Operators in Expressions
	Conditional Values (Inline If)
	Postfix Operators ++ and --
	Unary Operators
	Shortcut Operators
	Table: Shortcut Operators
	Variables and Array Declarations
	Implicit and Explicit Type Conversions
	Integer Arithmetic
	Bool Expressions
	Type Casting
	Data Values
	Constants
	Arrays
	Associative Array
	Fixed-Dimensioned Array (Matrix)
	Shape
	Table: Built-in Associative Array Functions
	Table: Built-in Matrix Functions
	Array and Matrix Assignments
	Array Values and Array Constants
	Implementation of Array and Matrix
	Inline For Expression
	Valset Types
	Valset Values in a Variable or Array
	Layouts and Bit Fields
	Layout Constants
	Strings
	String Constants
	Table: Escaped Characters in a String Constant
	String Operators
	String Expressions
	Table: Built-in String Functions
	Typeset Specification
	Procedures: Functions and Methods
	Passing Parameters to Procedures
	Declarations
	Declaring Variables and Arrays
	Named Constants
	Statements
	If Statement
	If Construct
	Switch Construct
	Block Construct
	Do Construct
	While
	Until
	For Construct
	Final Block
	Repeat Statement
	Break Statement
	Return Statement
	Control Flow Limitation
	Blocks
	Defining Objects
	Abstract Objects
	Defining Structures
	Abstract Structures
	Names in an Object or Structure
	Access: Visibility of Names
	Private
	Shared
	Public

	Storage Areas - Static or Anchor or Leaf
	Static Area
	Anchor Area
	Leaf Area

	Structure Example
	Object Values and Constants
	Global Definitions (Outside an Object)
	Inheritance
	Instantiation of an Object
	Default Value at Instantiation
	Enhanced Type Objects
	Properties
	Defining a Property
	Property Example
	Defining Procedures
	Identifying the Base Type
	Procedure Overloading and Overriding
	Procedure Options
	Methods
	Functions
	Constructors
	Simple Constructor
	Default Constructor
	Defining Operators
	Defining Type Casts
	Static Procedures
	Procedure Prototypes
	The Return Specification
	Basic Object Type Procedures
	Parameters Specification
	Access
	Shape Specification
	The Procedure Body
	Generator Functions
	Range
	Each

	Invocation of a Procedure
	Built-in Object Procedures
	Table: Built-in Object Procedures
	Name References in an Object
	Prototypes
	Function Prototype
	Method Prototype
	Type Cast Prototype
	Operator Prototype

	Pragma Declaration
	Printing Strings
	Hello, World! Program
	Example

